Handling data sparsity in collaborative filtering using emotion and semantic based features

Yashar Moshfeghi, Benjamin Piwowarski, J. Jose
{"title":"Handling data sparsity in collaborative filtering using emotion and semantic based features","authors":"Yashar Moshfeghi, Benjamin Piwowarski, J. Jose","doi":"10.1145/2009916.2010001","DOIUrl":null,"url":null,"abstract":"Collaborative filtering (CF) aims to recommend items based on prior user interaction. Despite their success, CF techniques do not handle data sparsity well, especially in the case of the cold start problem where there is no past rating for an item. In this paper, we provide a framework, which is able to tackle such issues by considering item-related emotions and semantic data. In order to predict the rating of an item for a given user, this framework relies on an extension of Latent Dirichlet Allocation, and on gradient boosted trees for the final prediction. We apply this framework to movie recommendation and consider two emotion spaces extracted from the movie plot summary and the reviews, and three semantic spaces: actor, director, and genre. Experiments with the 100K and 1M MovieLens datasets show that including emotion and semantic information significantly improves the accuracy of prediction and improves upon the state-of-the-art CF techniques. We also analyse the importance of each feature space and describe some uncovered latent groups.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

Abstract

Collaborative filtering (CF) aims to recommend items based on prior user interaction. Despite their success, CF techniques do not handle data sparsity well, especially in the case of the cold start problem where there is no past rating for an item. In this paper, we provide a framework, which is able to tackle such issues by considering item-related emotions and semantic data. In order to predict the rating of an item for a given user, this framework relies on an extension of Latent Dirichlet Allocation, and on gradient boosted trees for the final prediction. We apply this framework to movie recommendation and consider two emotion spaces extracted from the movie plot summary and the reviews, and three semantic spaces: actor, director, and genre. Experiments with the 100K and 1M MovieLens datasets show that including emotion and semantic information significantly improves the accuracy of prediction and improves upon the state-of-the-art CF techniques. We also analyse the importance of each feature space and describe some uncovered latent groups.
使用基于情感和语义的特征处理协同过滤中的数据稀疏性
协同过滤(CF)的目的是基于先前的用户交互来推荐项目。尽管CF技术取得了成功,但它们不能很好地处理数据稀疏性,特别是在冷启动问题的情况下,其中一个项目没有过去的评级。在本文中,我们提供了一个框架,该框架能够通过考虑项目相关情感和语义数据来解决这些问题。为了预测给定用户的物品评级,该框架依赖于潜在狄利克雷分配的扩展,并依赖于梯度增强树进行最终预测。我们将该框架应用于电影推荐,并考虑从电影情节总结和评论中提取的两个情感空间,以及三个语义空间:演员、导演和类型。对100K和1M MovieLens数据集的实验表明,包含情感和语义信息显著提高了预测的准确性,并改进了最先进的CF技术。我们还分析了每个特征空间的重要性,并描述了一些未发现的潜在群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信