Human Pose Estimation Based on Domain of Interest and Part Affinity Field

Shuangye Chen, Jialei Yang
{"title":"Human Pose Estimation Based on Domain of Interest and Part Affinity Field","authors":"Shuangye Chen, Jialei Yang","doi":"10.1109/ICRCV52986.2021.9546961","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective method to detect the 2D pose estimation of multiple people in an image. Learn human joint points through convolutional network, obtain the attention domain of joint points, classify the attention domain of the joint points, and obtain part affinity field of the information at the same time; combine the attention domain and part of the affinity field information of the joint points, using a greedy algorithm Perform clustering of joint points to finally obtain the human post. Simulation experimental data show that the method in this paper has achieved satisfactory results in performance and accuracy.","PeriodicalId":377887,"journal":{"name":"2021 3rd International Conference on Robotics and Computer Vision (ICRCV)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Conference on Robotics and Computer Vision (ICRCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCV52986.2021.9546961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes an effective method to detect the 2D pose estimation of multiple people in an image. Learn human joint points through convolutional network, obtain the attention domain of joint points, classify the attention domain of the joint points, and obtain part affinity field of the information at the same time; combine the attention domain and part of the affinity field information of the joint points, using a greedy algorithm Perform clustering of joint points to finally obtain the human post. Simulation experimental data show that the method in this paper has achieved satisfactory results in performance and accuracy.
基于兴趣域和部分关联场的人体姿态估计
本文提出了一种有效的检测图像中多人二维姿态估计的方法。通过卷积网络学习人体关节点,获得关节点的注意域,对关节点的注意域进行分类,同时获得信息的部分亲和场;结合结合点的注意域和部分亲和场信息,采用贪心算法对结合点进行聚类,最终得到人体岗位。仿真实验数据表明,本文方法在性能和精度上都取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信