Optimization of Random Subspace Ensemble for Bankruptcy Prediction

Sung-Hwan Min
{"title":"Optimization of Random Subspace Ensemble for Bankruptcy Prediction","authors":"Sung-Hwan Min","doi":"10.9716/KITS.2015.14.4.121","DOIUrl":null,"url":null,"abstract":"Ensemble classification is to utilize multiple classifiers instead of using a single classifier. Recently ensemble classifiers have attracted much attention in data mining community. Ensemble learning techniques has been proved to be very useful for improving the prediction accuracy. Bagging, boosting and random subspace are the most popular ensemble methods. In random subspace, each base classifier is trained on a randomly chosen feature subspace of the original feature space. The outputs of different base classifiers are aggregated together usually by a simple majority vote. In this study, we applied the random subspace method to the bankruptcy problem. Moreover, we proposed a method for optimizing the random subspace ensemble. The genetic algorithm was used to optimize classifier subset of random subspace ensemble for bankruptcy prediction. This paper applied the proposed genetic algorithm based random subspace ensemble model to the bankruptcy prediction problem using a real data set and compared it with other models. Experimental results showed the proposed model outperformed the other models.","PeriodicalId":272384,"journal":{"name":"Journal of the Korea society of IT services","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea society of IT services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9716/KITS.2015.14.4.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ensemble classification is to utilize multiple classifiers instead of using a single classifier. Recently ensemble classifiers have attracted much attention in data mining community. Ensemble learning techniques has been proved to be very useful for improving the prediction accuracy. Bagging, boosting and random subspace are the most popular ensemble methods. In random subspace, each base classifier is trained on a randomly chosen feature subspace of the original feature space. The outputs of different base classifiers are aggregated together usually by a simple majority vote. In this study, we applied the random subspace method to the bankruptcy problem. Moreover, we proposed a method for optimizing the random subspace ensemble. The genetic algorithm was used to optimize classifier subset of random subspace ensemble for bankruptcy prediction. This paper applied the proposed genetic algorithm based random subspace ensemble model to the bankruptcy prediction problem using a real data set and compared it with other models. Experimental results showed the proposed model outperformed the other models.
破产预测的随机子空间集成优化
集成分类是利用多个分类器而不是使用单个分类器。近年来,集成分类器在数据挖掘领域受到了广泛的关注。集成学习技术已被证明对提高预测精度非常有用。套袋、提升和随机子空间是最常用的集成方法。在随机子空间中,每个基分类器在原始特征空间中随机选择的特征子空间上进行训练。不同基分类器的输出通常通过简单多数投票聚合在一起。本文将随机子空间方法应用于破产问题。此外,我们还提出了一种优化随机子空间集合的方法。采用遗传算法对随机子空间集成分类器子集进行优化,用于破产预测。本文将提出的基于遗传算法的随机子空间集成模型应用于实际数据集的破产预测问题,并与其他模型进行了比较。实验结果表明,该模型优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信