Gate-All-Around Technology is Coming.: What's Next After GAA?

V. Moroz
{"title":"Gate-All-Around Technology is Coming.: What's Next After GAA?","authors":"V. Moroz","doi":"10.1145/3569052.3579862","DOIUrl":null,"url":null,"abstract":"Currently, the industry is transitioning from FinFETs to gate-all-around (GAA) technology and will likely have several GAA technology generations in the next few years. What's next after that? This is the question that we are trying to answer in this project by benchmarking GAA technology with transistors on 2D materials and stacked transistors (CFETs). The main objective for logic is to get a meaningful gain in power, performance, area, and cost (PPAC). The main objective for SRAM is to get a noticeable density scaling for the SRAM array and its periphery without losing performance and yield. Another objective is to move in the direction that has a promise of longer-term progress, such as to start stacking two layers of transistors before moving to a larger number of transistor layers. With that in mind, we explore and discuss the next steps beyond GAA technology.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3579862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, the industry is transitioning from FinFETs to gate-all-around (GAA) technology and will likely have several GAA technology generations in the next few years. What's next after that? This is the question that we are trying to answer in this project by benchmarking GAA technology with transistors on 2D materials and stacked transistors (CFETs). The main objective for logic is to get a meaningful gain in power, performance, area, and cost (PPAC). The main objective for SRAM is to get a noticeable density scaling for the SRAM array and its periphery without losing performance and yield. Another objective is to move in the direction that has a promise of longer-term progress, such as to start stacking two layers of transistors before moving to a larger number of transistor layers. With that in mind, we explore and discuss the next steps beyond GAA technology.
门全能技术即将到来。GAA之后的下一个目标是什么?
目前,该行业正在从finfet向栅极全能(GAA)技术过渡,并可能在未来几年内出现几代GAA技术。接下来是什么?这是我们在这个项目中试图通过在二维材料和堆叠晶体管(cfet)上对GAA技术进行基准测试来回答的问题。逻辑的主要目标是在功率、性能、面积和成本(PPAC)方面获得有意义的增益。SRAM的主要目标是在不损失性能和良率的情况下,为SRAM阵列及其外围获得显著的密度缩放。另一个目标是朝着有希望取得长期进展的方向发展,例如,在发展更多晶体管层之前,先开始堆叠两层晶体管。考虑到这一点,我们将探索和讨论GAA技术之外的下一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信