B. Kathariya, Vladyslav Zakharchenko, Zhu Li, Jianle Chen
{"title":"Level-of-Detail Generation Using Binary-Tree for Lifting Scheme in LiDAR Point Cloud Attributes Coding","authors":"B. Kathariya, Vladyslav Zakharchenko, Zhu Li, Jianle Chen","doi":"10.1109/DCC.2019.00092","DOIUrl":null,"url":null,"abstract":"Point clouds are one of the emerging 3D visual representations of real word and plenty of useful applications has already been demonstrated. However, a huge amount of data associated with it has added challenges in both transmission and storage. This requires an efficient coding solution and brought a great attention among compression community. MPEG and JPEG standardization group has already started developing coding solution and proposed two test-models namely V-PCC, video-based coding solution, for dynamic point cloud and G-PCC, a native geometry-based coding solution, for static and LiDAR point cloud. In G-PCC, octree (lossless) and tri-soup(lossy) for geometry coding, similarly regional adaptive hierarchical transform (RAHT) and lifting-scheme for attributes coding are currently being explored. Lifting-scheme relies on level-of-details(LOD) structure for attributes prediction where LOD is generated with distance based subsampling approach. In this work we proposed a new LOD generation scheme using binary-tree and showed it provides better coding solution for sparse point cloud such as LiDAR. The experimental results demonstrated 12% bitrate reduction for reflectance and 8%, 6% and 7% bitrate reduction for luma, chroma Cb and chroma Cr respectively as well as up to 4 times computational complexity reduction compared to current G-PCC lifting-scheme.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Point clouds are one of the emerging 3D visual representations of real word and plenty of useful applications has already been demonstrated. However, a huge amount of data associated with it has added challenges in both transmission and storage. This requires an efficient coding solution and brought a great attention among compression community. MPEG and JPEG standardization group has already started developing coding solution and proposed two test-models namely V-PCC, video-based coding solution, for dynamic point cloud and G-PCC, a native geometry-based coding solution, for static and LiDAR point cloud. In G-PCC, octree (lossless) and tri-soup(lossy) for geometry coding, similarly regional adaptive hierarchical transform (RAHT) and lifting-scheme for attributes coding are currently being explored. Lifting-scheme relies on level-of-details(LOD) structure for attributes prediction where LOD is generated with distance based subsampling approach. In this work we proposed a new LOD generation scheme using binary-tree and showed it provides better coding solution for sparse point cloud such as LiDAR. The experimental results demonstrated 12% bitrate reduction for reflectance and 8%, 6% and 7% bitrate reduction for luma, chroma Cb and chroma Cr respectively as well as up to 4 times computational complexity reduction compared to current G-PCC lifting-scheme.