{"title":"Quantum versus classical learnability","authors":"R. Servedio, S. Gortler","doi":"10.1109/CCC.2001.933881","DOIUrl":null,"url":null,"abstract":"Motivated by work on quantum black-box query complexity, we consider quantum versions of two well-studied models of learning Boolean functions: Angluin's (1988) model of exact learning from membership queries and Valiant's (1984) Probably Approximately Correct (PAC) model of learning from random examples. For each of these two learning models we establish a polynomial relationship between the number of quantum versus classical queries required for learning. Our results provide an interesting contrast to known results which show that testing black-box functions for various properties can require exponentially more classical queries than quantum queries. We also show that under a widely held computational hardness assumption there is a class of Boolean functions which is polynomial-time learnable in the quantum version but not the classical version of each learning model; thus while quantum and classical learning are equally powerful from an information theory perspective, they are different when viewed from a computational complexity perspective.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
Motivated by work on quantum black-box query complexity, we consider quantum versions of two well-studied models of learning Boolean functions: Angluin's (1988) model of exact learning from membership queries and Valiant's (1984) Probably Approximately Correct (PAC) model of learning from random examples. For each of these two learning models we establish a polynomial relationship between the number of quantum versus classical queries required for learning. Our results provide an interesting contrast to known results which show that testing black-box functions for various properties can require exponentially more classical queries than quantum queries. We also show that under a widely held computational hardness assumption there is a class of Boolean functions which is polynomial-time learnable in the quantum version but not the classical version of each learning model; thus while quantum and classical learning are equally powerful from an information theory perspective, they are different when viewed from a computational complexity perspective.