A Survey on Automated Human Action Recognition Using Multi view Feature

S. Ashwini, Varalatchoumy
{"title":"A Survey on Automated Human Action Recognition Using Multi view Feature","authors":"S. Ashwini, Varalatchoumy","doi":"10.23883/ijrter.2019.5087.evu6a","DOIUrl":null,"url":null,"abstract":"— Recognizing the human action plays a significant role in surveillance cameras. Usually cameras are situated at distant place and convey actions in form of signals at one particular place. This paper presents a framework for recognizing a sequence of actions based on multi-view video data. To depict various actions activities performed in various perspectives, view-invariant feature is being used. The features of multi-view are extracted from various temporal scales, which are demonstrated using global spatial-temporal distribution. The proposed system performs is designed to work on cross tested datasets wherein the system doesn’t require retraining for same scenario that occurs multiple times.","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5087.evu6a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

— Recognizing the human action plays a significant role in surveillance cameras. Usually cameras are situated at distant place and convey actions in form of signals at one particular place. This paper presents a framework for recognizing a sequence of actions based on multi-view video data. To depict various actions activities performed in various perspectives, view-invariant feature is being used. The features of multi-view are extracted from various temporal scales, which are demonstrated using global spatial-temporal distribution. The proposed system performs is designed to work on cross tested datasets wherein the system doesn’t require retraining for same scenario that occurs multiple times.
基于多视图特征的人体动作自动识别研究进展
-识别人的行为在监控摄像机中起着重要作用。摄像机通常安装在较远的地方,在一个特定的地方以信号的形式传达动作。本文提出了一种基于多视点视频数据的动作序列识别框架。为了描述在不同透视图中执行的各种操作活动,使用了视图不变特性。从不同的时间尺度提取多视图特征,并利用全局时空分布对其进行论证。所提出的系统执行设计用于交叉测试的数据集,其中系统不需要对多次发生的相同场景进行重新训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信