A competitive coevolution scheme inspired by DE

Gudmundur Einarsson, T. Runarsson, G. Stefansson
{"title":"A competitive coevolution scheme inspired by DE","authors":"Gudmundur Einarsson, T. Runarsson, G. Stefansson","doi":"10.1109/SDE.2014.7031529","DOIUrl":null,"url":null,"abstract":"A competitive coevolutionary algorithm is used as a metaheuristic for making a combination of optimization algorithms more robust against poorly chosen starting values. Another objective of the coevolutionary algorithm is to minimize the computation time while still achieving convergence. Two scenarios are created. The species in the coevolution are parameters for the optimization procedure (called predators) and parameters defining starting points for the optimization algorithms (called prey). Two functions are considered for the prey and two algorithms are explored for the predators, namely simulated annealing and BFGS. The creation and selection of new individuals in the coevolution is done analogously to that of DE. The historical evolution of the prey is explored as a potential diagnostics tool for multimodality.","PeriodicalId":224386,"journal":{"name":"2014 IEEE Symposium on Differential Evolution (SDE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Differential Evolution (SDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SDE.2014.7031529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A competitive coevolutionary algorithm is used as a metaheuristic for making a combination of optimization algorithms more robust against poorly chosen starting values. Another objective of the coevolutionary algorithm is to minimize the computation time while still achieving convergence. Two scenarios are created. The species in the coevolution are parameters for the optimization procedure (called predators) and parameters defining starting points for the optimization algorithms (called prey). Two functions are considered for the prey and two algorithms are explored for the predators, namely simulated annealing and BFGS. The creation and selection of new individuals in the coevolution is done analogously to that of DE. The historical evolution of the prey is explored as a potential diagnostics tool for multimodality.
受DE启发的竞争协同进化方案
竞争协同进化算法被用作一种元启发式算法,使优化算法的组合对选择不佳的起始值更具鲁棒性。协同进化算法的另一个目标是在实现收敛的同时最小化计算时间。创建了两个场景。共同进化中的物种是优化过程的参数(称为捕食者)和优化算法起点的参数(称为猎物)。针对猎物考虑了两种函数,针对捕食者探索了两种算法,即模拟退火算法和BFGS算法。在共同进化中,新个体的创造和选择与DE的过程类似。猎物的历史进化被探索作为多模态的潜在诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信