Fully polynomial Byzantine agreement in t + 1 rounds

J. Garay, Y. Moses
{"title":"Fully polynomial Byzantine agreement in t + 1 rounds","authors":"J. Garay, Y. Moses","doi":"10.1145/167088.167101","DOIUrl":null,"url":null,"abstract":"This paper presents a polynomial protocol for reaching Byzantine agreement in t + 1 rounds whenever n > 3t, where n is the number of processors and t is an a priori upper bound on the number of failures. This resolves an open problem presented by Pease, Shostak and Lamport ir 1980.","PeriodicalId":280602,"journal":{"name":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","volume":"51 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the twenty-fifth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/167088.167101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

This paper presents a polynomial protocol for reaching Byzantine agreement in t + 1 rounds whenever n > 3t, where n is the number of processors and t is an a priori upper bound on the number of failures. This resolves an open problem presented by Pease, Shostak and Lamport ir 1980.
t + 1轮的完全多项式拜占庭协议
本文提出了当n > 3t时,在t + 1轮内达到拜占庭协议的多项式协议,其中n为处理器数,t为故障数的先验上界。这解决了Pease、Shostak和Lamport在1980年提出的一个开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信