Transferable Belief Model for hair mask segmentation

C. Rousset, P. Coulon, M. Rombaut
{"title":"Transferable Belief Model for hair mask segmentation","authors":"C. Rousset, P. Coulon, M. Rombaut","doi":"10.1109/ICIP.2010.5651970","DOIUrl":null,"url":null,"abstract":"In this paper, we present a study of transferable belief model for automatic hair segmentation process. Firstly, we recall the transferable Belief Model. Secondly, we defined for the parameters which characterize hair (Frequency and Color) a Basic Belief assignment which represents the belief that a pixel was or not a hair pixel. Then we introduce a discounting function based on the distance to the face to increase the reliability of our sensors. At the end of this process, we segment the hair with a matting process. We compare the process with the logical fusion. Results are evaluated using semi-manual segmentation references","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"47 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we present a study of transferable belief model for automatic hair segmentation process. Firstly, we recall the transferable Belief Model. Secondly, we defined for the parameters which characterize hair (Frequency and Color) a Basic Belief assignment which represents the belief that a pixel was or not a hair pixel. Then we introduce a discounting function based on the distance to the face to increase the reliability of our sensors. At the end of this process, we segment the hair with a matting process. We compare the process with the logical fusion. Results are evaluated using semi-manual segmentation references
发膜分割的可转移信念模型
本文提出了一种用于毛发自动分割的可转移信念模型。首先,我们回顾可转移信念模型。其次,我们为表征头发的参数(频率和颜色)定义了一个基本信念赋值,它表示一个像素是否是头发像素的信念。然后,我们引入了一个基于人脸距离的折扣函数,以提高传感器的可靠性。在这个过程的最后,我们用一个铺垫过程分割头发。我们将这个过程与逻辑融合进行比较。结果评估使用半人工分割参考
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信