TagNet: Tag Out the Value Sequence of SQL Statement

Yujie Zhong, Liutong Xu
{"title":"TagNet: Tag Out the Value Sequence of SQL Statement","authors":"Yujie Zhong, Liutong Xu","doi":"10.1109/ICICAS48597.2019.00173","DOIUrl":null,"url":null,"abstract":"In order to assist person who doesn't know how to write SQL to access the data in a relation database, using a deep neural architecture to translate the natural language to SQL has recently been extensively studied. Previous work suffers from the complexity of where clause, since the number of conditions is totally random and predicting the value of condition is a sequence-to-sequence problem. We follow the slot filling idea, and introduce a model called TagNet. First of all, we innovatively propose a task attention mechanism. It takes the relativity of tasks into consideration for attention mechanism. Secondly, we use type embedding of each token of question and each column to enhance the representation for value prediction. Thirdly, in the task of predicting WHERE VALUE, we propose a tag decoder. It output a sequence of equal length compared with input. It consists of two tokens:, , indicating the corresponding token of input is whether or not a value token. We evaluate out model on WikiSQL, and compared to our baseline-SQLNet, we gain an absolute 7.6% increase on logic form accuracy and 6.3% increase on execution accuracy.","PeriodicalId":409693,"journal":{"name":"2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Computing, Automation and Systems (ICICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICAS48597.2019.00173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to assist person who doesn't know how to write SQL to access the data in a relation database, using a deep neural architecture to translate the natural language to SQL has recently been extensively studied. Previous work suffers from the complexity of where clause, since the number of conditions is totally random and predicting the value of condition is a sequence-to-sequence problem. We follow the slot filling idea, and introduce a model called TagNet. First of all, we innovatively propose a task attention mechanism. It takes the relativity of tasks into consideration for attention mechanism. Secondly, we use type embedding of each token of question and each column to enhance the representation for value prediction. Thirdly, in the task of predicting WHERE VALUE, we propose a tag decoder. It output a sequence of equal length compared with input. It consists of two tokens:, , indicating the corresponding token of input is whether or not a value token. We evaluate out model on WikiSQL, and compared to our baseline-SQLNet, we gain an absolute 7.6% increase on logic form accuracy and 6.3% increase on execution accuracy.
TagNet:标记出SQL语句的值序列
为了帮助不知道如何编写SQL的人访问关系数据库中的数据,使用深度神经架构将自然语言转换为SQL已经得到了广泛的研究。以前的工作受到where子句的复杂性的影响,因为条件的数量是完全随机的,并且预测条件的值是一个序列到序列的问题。我们遵循槽填充的思想,并引入了一个称为TagNet的模型。首先,我们创新性地提出了任务注意机制。注意机制考虑了任务的相对性。其次,我们利用问题的每个标记和每一列的类型嵌入来增强值预测的表示。第三,在预测WHERE值的任务中,我们提出了一个标签解码器。它输出一个与输入长度相等的序列。它由两个标记组成:,,表示输入的对应标记是否为值标记。我们在WikiSQL上评估了我们的模型,与我们的基线sqlnet相比,我们在逻辑形式准确性上提高了7.6%,在执行准确性上提高了6.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信