Classification Studies on Vibrational Patterns of Distributed Fiber Sensors using Machine Learning

Yada Sai Pranay, Jagadeeshwar Tabjula, Srijith Kanakambaran
{"title":"Classification Studies on Vibrational Patterns of Distributed Fiber Sensors using Machine Learning","authors":"Yada Sai Pranay, Jagadeeshwar Tabjula, Srijith Kanakambaran","doi":"10.1109/IBSSC56953.2022.10037519","DOIUrl":null,"url":null,"abstract":"Distributed fiber optic sensors are smart replacements to point sensors in monitoring vibrations over long distances with excellent resolution. In this paper, we investigate the use of machine learning models to classify different vibrational events. Spectrograms of vibrational events available on a public database is used for training and testing the machine learning models like Support Vector Machine, Ensemble learning and K-Nearest Neighbour. The best accuracy of 86.1% is obtained for Support Vector classifier after hyperparameter tuning with 5-fold cross validation.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed fiber optic sensors are smart replacements to point sensors in monitoring vibrations over long distances with excellent resolution. In this paper, we investigate the use of machine learning models to classify different vibrational events. Spectrograms of vibrational events available on a public database is used for training and testing the machine learning models like Support Vector Machine, Ensemble learning and K-Nearest Neighbour. The best accuracy of 86.1% is obtained for Support Vector classifier after hyperparameter tuning with 5-fold cross validation.
基于机器学习的分布式光纤传感器振动模式分类研究
分布式光纤传感器是点传感器的智能替代品,在监测长距离振动方面具有优异的分辨率。在本文中,我们研究了使用机器学习模型来分类不同的振动事件。公共数据库中可用的振动事件谱图用于训练和测试机器学习模型,如支持向量机,集成学习和k近邻。经过5次交叉验证的超参数调优后,支持向量分类器的准确率达到了86.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信