An SVM-Based Pedestrian Gait Recognition Algorithm Using a Foot-Mounted IMU

Jianqiang Chen, Jeffrey Zhu, Meifeng Guo
{"title":"An SVM-Based Pedestrian Gait Recognition Algorithm Using a Foot-Mounted IMU","authors":"Jianqiang Chen, Jeffrey Zhu, Meifeng Guo","doi":"10.1109/icet55676.2022.9825019","DOIUrl":null,"url":null,"abstract":"Based on the real-time data of angular velocity and acceleration sensed by IMU, this paper uses the machine learning method, support vector machine (SVM), to find a way to recognize and classify some common action types such as walking, running, going upstairs, going downstairs, jumping, etc. after data preprocessing and dimensionality reduction with Principal Component Analysis (PCA). The algorithm provides a basis for identifying zero speed at different gait states to improve the relevance of the zero-speed correction algorithm. And it will help identify different pedestrian motion states as a basis for motion constraint algorithms.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icet55676.2022.9825019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the real-time data of angular velocity and acceleration sensed by IMU, this paper uses the machine learning method, support vector machine (SVM), to find a way to recognize and classify some common action types such as walking, running, going upstairs, going downstairs, jumping, etc. after data preprocessing and dimensionality reduction with Principal Component Analysis (PCA). The algorithm provides a basis for identifying zero speed at different gait states to improve the relevance of the zero-speed correction algorithm. And it will help identify different pedestrian motion states as a basis for motion constraint algorithms.
一种基于支持向量机的足部IMU行人步态识别算法
本文基于IMU实时感知的角速度和加速度数据,利用机器学习方法支持向量机(SVM),通过数据预处理和主成分分析(PCA)降维,找到一种对行走、跑步、上楼、下楼、跳跃等常见动作类型进行识别和分类的方法。该算法为识别不同步态状态下的零速度提供了依据,提高了零速度校正算法的相关性。它将有助于识别不同的行人运动状态,作为运动约束算法的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信