PERAMALAN JUMLAH TITIK PANAS PROVINSI KALIMANTAN TIMUR MENGGUNAKAN METODE RADIAL BASIS FUNCTION NEURAL NETWORK

Siti Aisyah, Sri Wahyuningsih, Fdt Amijaya
{"title":"PERAMALAN JUMLAH TITIK PANAS PROVINSI KALIMANTAN TIMUR MENGGUNAKAN METODE RADIAL BASIS FUNCTION NEURAL NETWORK","authors":"Siti Aisyah, Sri Wahyuningsih, Fdt Amijaya","doi":"10.34312/jjps.v2i2.10292","DOIUrl":null,"url":null,"abstract":"Radial Basis Function Neural Network (RBFNN) is a neural  that uses a radial base function in hidden layers for classification and forecasting purposes. Neural Network is developed into a radial function base with an information processing system that has characteristics similar to biological neural networks, consisting of input layers, hidden layers, and output layers. The data used in this study is data on the number of hotspots in East Kalimantan Province obtained from the official website of the National Aeronautics and Space Administration (NASA). The purpose of this research is to obtain the RBFNN model and the results of forecasting the number of hotspots for the period January 2020 to March 2020. The radial basis function used is the local Gaussian function and the linear activation function. In this study using the proportion of training data and testing data 70: 30; 80:20; and 90:10. The results showed that the input network using significant Partial Autocorrelation Function (PACF) at lag 1 and lag 2, so that the RBFNN model that was formed involved Xt-1 and Xt-2. The best Mean Absolute Percentage Error (MAPE) minimum obtained  the 80:20 data proportion with 2 hidden networks. The RBFNN architecture that is formed is 2 input layers, 2 hidden layers and 1 output layer. Data from forecasting the number of hotspots in East Kalimantan Province shows that from January 2020 to February 2020 there was a decline and March 2020 an increase.","PeriodicalId":315674,"journal":{"name":"Jambura Journal of Probability and Statistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jambura Journal of Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/jjps.v2i2.10292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Radial Basis Function Neural Network (RBFNN) is a neural  that uses a radial base function in hidden layers for classification and forecasting purposes. Neural Network is developed into a radial function base with an information processing system that has characteristics similar to biological neural networks, consisting of input layers, hidden layers, and output layers. The data used in this study is data on the number of hotspots in East Kalimantan Province obtained from the official website of the National Aeronautics and Space Administration (NASA). The purpose of this research is to obtain the RBFNN model and the results of forecasting the number of hotspots for the period January 2020 to March 2020. The radial basis function used is the local Gaussian function and the linear activation function. In this study using the proportion of training data and testing data 70: 30; 80:20; and 90:10. The results showed that the input network using significant Partial Autocorrelation Function (PACF) at lag 1 and lag 2, so that the RBFNN model that was formed involved Xt-1 and Xt-2. The best Mean Absolute Percentage Error (MAPE) minimum obtained  the 80:20 data proportion with 2 hidden networks. The RBFNN architecture that is formed is 2 input layers, 2 hidden layers and 1 output layer. Data from forecasting the number of hotspots in East Kalimantan Province shows that from January 2020 to February 2020 there was a decline and March 2020 an increase.
径向基函数神经网络(RBFNN)是一种利用隐藏层中的径向基函数进行分类和预测的神经网络。神经网络发展成为具有类似生物神经网络特征的径向函数基的信息处理系统,由输入层、隐藏层和输出层组成。本研究使用的数据是来自美国国家航空航天局(NASA)官方网站的关于东加里曼丹省热点数量的数据。本研究的目的是获得2020年1月至2020年3月期间的RBFNN模型和热点数量预测结果。所使用的径向基函数是局部高斯函数和线性激活函数。本研究采用训练数据与测试数据的比例为70:30;80:20;和挺。结果表明,输入网络在滞后1和滞后2处使用显著的偏自相关函数(PACF),使得所形成的RBFNN模型涉及到Xt-1和Xt-2。最佳平均绝对百分比误差(MAPE)最小值在2个隐藏网络下获得80:20的数据比例。形成的RBFNN体系结构为2个输入层、2个隐藏层和1个输出层。来自东加里曼丹省热点数量预测的数据显示,从2020年1月到2020年2月,热点数量有所下降,2020年3月有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信