{"title":"Motion Compensated X-ray CT Algorithm for Moving Objects","authors":"Takumi Tanaka, S. Maeda, S. Ishii","doi":"10.1109/ICMLA.2011.97","DOIUrl":null,"url":null,"abstract":"In this study a motion compensated X-ray CT algorithm based on a statistical model is proposed. The important feature of our motion compensated X-ray CT algorithm is that the target object is assumed to move or deform along the time. Then the projections of the deforming target object are described by a state-space model. The deformation is described by motion vectors each attached to each pixel. To reduce the ill-posed ness we incorporate into the prior distribution our a priori knowledge that the target object is composed of a restricted number of materials whose X-ray absorption coefficients are roughly known. To perform Bayesian inference based on our statistical model, the posterior distribution is approximated by a computationally tractable distribution such to minimize Kullback-Leibler (KL) divergence between the posterior and the tractable distributions. Computer simulations using phantom images show the effectiveness of our CT algorithm, suggesting the state-space model works even when the target object is deforming.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this study a motion compensated X-ray CT algorithm based on a statistical model is proposed. The important feature of our motion compensated X-ray CT algorithm is that the target object is assumed to move or deform along the time. Then the projections of the deforming target object are described by a state-space model. The deformation is described by motion vectors each attached to each pixel. To reduce the ill-posed ness we incorporate into the prior distribution our a priori knowledge that the target object is composed of a restricted number of materials whose X-ray absorption coefficients are roughly known. To perform Bayesian inference based on our statistical model, the posterior distribution is approximated by a computationally tractable distribution such to minimize Kullback-Leibler (KL) divergence between the posterior and the tractable distributions. Computer simulations using phantom images show the effectiveness of our CT algorithm, suggesting the state-space model works even when the target object is deforming.