A-U3D: A Unified 2D/3D CNN Accelerator on the Versal Platform for Disparity Estimation

Tianyu Zhang, Dong Li, Hong Wang, Yunzhi Li, Xiang Ma, Wei Luo, Yu Wang, Yang Huang, Yi Li, Yu Zhang, Xinlin Yang, Xijie Jia, Qiang Lin, Lu Tian, Fan Jiang, Dongliang Xie, Hong Luo, Yi Shan
{"title":"A-U3D: A Unified 2D/3D CNN Accelerator on the Versal Platform for Disparity Estimation","authors":"Tianyu Zhang, Dong Li, Hong Wang, Yunzhi Li, Xiang Ma, Wei Luo, Yu Wang, Yang Huang, Yi Li, Yu Zhang, Xinlin Yang, Xijie Jia, Qiang Lin, Lu Tian, Fan Jiang, Dongliang Xie, Hong Luo, Yi Shan","doi":"10.1109/FPL57034.2022.00029","DOIUrl":null,"url":null,"abstract":"3-Dimensional (3D) convolutional neural networks (CNN) are widely used in the field of disparity estimation. However, 3D CNN is more computationally dense than 2D CNN due to the increase in the disparity dimension. To enable more practical applications in autonomous driving, robotics, and other scenarios on embedded devices, we propose a unified 2D/3D CNN accelerator (A-U3D) design. This design unifies 3D standard / transposed convolution into 2D standard convolution, respectively. Our processing unit can support 2D and 3D convolution in the same mode without additional structures. Based on PSMNet, a 3D-based CNN for disparity estimation, we build a heterogeneous multi-core system integrated with A-U3D in conjunction with CPU, DSP, and AI Engines on the Xilinx Versal ACAP platform. Running the pruned 8-bit model, our A-U3D system achieves 0.289s latency, which is 11.5 × faster than the state-of-the-art solution on the same platform, and reaches an end-to-end (E2E) performance of 10.1 frames per second (FPS). Our proposed system explores the feasibility of deploying 3D CNNs with large workloads on FPGA.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3-Dimensional (3D) convolutional neural networks (CNN) are widely used in the field of disparity estimation. However, 3D CNN is more computationally dense than 2D CNN due to the increase in the disparity dimension. To enable more practical applications in autonomous driving, robotics, and other scenarios on embedded devices, we propose a unified 2D/3D CNN accelerator (A-U3D) design. This design unifies 3D standard / transposed convolution into 2D standard convolution, respectively. Our processing unit can support 2D and 3D convolution in the same mode without additional structures. Based on PSMNet, a 3D-based CNN for disparity estimation, we build a heterogeneous multi-core system integrated with A-U3D in conjunction with CPU, DSP, and AI Engines on the Xilinx Versal ACAP platform. Running the pruned 8-bit model, our A-U3D system achieves 0.289s latency, which is 11.5 × faster than the state-of-the-art solution on the same platform, and reaches an end-to-end (E2E) performance of 10.1 frames per second (FPS). Our proposed system explores the feasibility of deploying 3D CNNs with large workloads on FPGA.
A- u3d:通用平台上用于视差估计的统一2D/3D CNN加速器
三维卷积神经网络(CNN)在视差估计领域有着广泛的应用。然而,由于视差维度的增加,3D CNN比2D CNN的计算密度更高。为了在嵌入式设备上实现自动驾驶、机器人和其他场景的更多实际应用,我们提出了一种统一的2D/3D CNN加速器(a - u3d)设计。本设计将三维标准卷积/转置卷积分别统一为二维标准卷积。我们的处理单元可以在相同的模式下支持2D和3D卷积,而无需额外的结构。基于基于3d的视差估计CNN PSMNet,我们在Xilinx Versal ACAP平台上构建了一个集成a - u3d、CPU、DSP和AI引擎的异构多核系统。运行修剪的8位模型,我们的A-U3D系统实现了0.289s的延迟,比同一平台上最先进的解决方案快11.5倍,并达到了每秒10.1帧(FPS)的端到端(E2E)性能。我们提出的系统探索了在FPGA上部署具有大工作负载的3D cnn的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信