Survival Prediction Model of Renal Transplantation using Deep Neural Network

Somenath Chakraborty, Chaoyang Zhang
{"title":"Survival Prediction Model of Renal Transplantation using Deep Neural Network","authors":"Somenath Chakraborty, Chaoyang Zhang","doi":"10.1109/ICCE50343.2020.9290695","DOIUrl":null,"url":null,"abstract":"The objectives of this paper are to explore ways to parallelize and distribute deep learning in multi-core and distributed settings. We have heuristically improved the training parameter setting by a Deep Neural Network (DNN) using quad-core CPU and Graphical Processing Unit (GPU) and develop a setting to improve training performances. Along with that, a Parallel Phase Neural network model (PHNNM) has been proposed for the prediction of the long-term survival of liver patients who undergo liver transplantation (LT). We made survival analysis of 13 years in the prediction of liver patients after LT and trained the liver transplantation system to follow up data of 13 years separately using a multilayer perceptron PHNNM model with proper selection of data attributes in conjunction with evaluating the survival probabilities of such data. This paper proved that our prediction model is suitable for the long-term prognosis of survival of patients after LT. The promising results are shown, in combination with the computational performances in terms of CPU and GPU.","PeriodicalId":421963,"journal":{"name":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","volume":"904 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 1st International Conference for Convergence in Engineering (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE50343.2020.9290695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The objectives of this paper are to explore ways to parallelize and distribute deep learning in multi-core and distributed settings. We have heuristically improved the training parameter setting by a Deep Neural Network (DNN) using quad-core CPU and Graphical Processing Unit (GPU) and develop a setting to improve training performances. Along with that, a Parallel Phase Neural network model (PHNNM) has been proposed for the prediction of the long-term survival of liver patients who undergo liver transplantation (LT). We made survival analysis of 13 years in the prediction of liver patients after LT and trained the liver transplantation system to follow up data of 13 years separately using a multilayer perceptron PHNNM model with proper selection of data attributes in conjunction with evaluating the survival probabilities of such data. This paper proved that our prediction model is suitable for the long-term prognosis of survival of patients after LT. The promising results are shown, in combination with the computational performances in terms of CPU and GPU.
基于深度神经网络的肾移植存活预测模型
本文的目标是探索在多核和分布式设置中并行化和分布式深度学习的方法。利用四核CPU和图形处理单元(GPU)对深度神经网络(DNN)的训练参数设置进行了启发式改进,并开发了一种提高训练性能的设置。与此同时,平行相位神经网络模型(PHNNM)被提出用于预测肝移植(LT)患者的长期生存。我们对肝移植术后患者的预测进行了13年的生存分析,并使用多层感知器PHNNM模型训练肝移植系统单独随访13年的数据,适当选择数据属性并评估这些数据的生存概率。本文证明我们的预测模型适用于lt后患者的长期生存预后。结合CPU和GPU的计算性能,显示出令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信