Transformer Incipient Fault Detection Technique Based on Neural Network

Gideon Dadzie, E. Frimpong, Caleb Myers Allotey, E. Boateng
{"title":"Transformer Incipient Fault Detection Technique Based on Neural Network","authors":"Gideon Dadzie, E. Frimpong, Caleb Myers Allotey, E. Boateng","doi":"10.1109/PowerAfrica49420.2020.9219948","DOIUrl":null,"url":null,"abstract":"The paper presents an artificial intelligence approach to transformer incipient fault diagnosis. Gas concentration data for hydrogen gas (H<inf>2</inf>), methane (CH<inf>4</inf>), ethane (C<inf>2</inf>H<inf>6</inf>), ethylene (C<inf>2</inf>H<inf>4</inf>) and acetylene (C<inf>2</inf>H<inf>2</inf>) are obtained and processed by determining their relative gas concentrations. The relative gas concentrations are further transformed using a coding approach. The transformed relative gas concentrations are then fed into a multilayer perceptron neural network whose outputs give diagnosis for incipient faults. The proposed approach was tested on 145 data sets of gas concentrations. Results obtained show that the proposed approach has good prospects for quantitative diagnosis of incipient faults.","PeriodicalId":325937,"journal":{"name":"2020 IEEE PES/IAS PowerAfrica","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PES/IAS PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerAfrica49420.2020.9219948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents an artificial intelligence approach to transformer incipient fault diagnosis. Gas concentration data for hydrogen gas (H2), methane (CH4), ethane (C2H6), ethylene (C2H4) and acetylene (C2H2) are obtained and processed by determining their relative gas concentrations. The relative gas concentrations are further transformed using a coding approach. The transformed relative gas concentrations are then fed into a multilayer perceptron neural network whose outputs give diagnosis for incipient faults. The proposed approach was tested on 145 data sets of gas concentrations. Results obtained show that the proposed approach has good prospects for quantitative diagnosis of incipient faults.
基于神经网络的变压器早期故障检测技术
提出了一种用于变压器早期故障诊断的人工智能方法。得到了氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)和乙炔(C2H2)的气体浓度数据,并通过测定它们的相对气体浓度进行了处理。使用编码方法进一步变换相对气体浓度。然后将转换后的相对气体浓度输入多层感知器神经网络,该网络的输出对早期故障进行诊断。提出的方法在145个气体浓度数据集上进行了测试。结果表明,该方法在早期断层的定量诊断中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信