Automatic detection of early blight infection on tomato crops using a color based classification strategy

Juan F. Molina, R. Gil, C. Bojacá, Francisco Gomez, Hugo Franco
{"title":"Automatic detection of early blight infection on tomato crops using a color based classification strategy","authors":"Juan F. Molina, R. Gil, C. Bojacá, Francisco Gomez, Hugo Franco","doi":"10.1109/STSIVA.2014.7010166","DOIUrl":null,"url":null,"abstract":"This work presents a Computer Vision prototype strategy for the automatic detection of mycotic infections on tomato crops. This Computer Vision method is based on the characterization of tomato leaflets (both healthy and early blight-infected regions of interest - ROIs) by color description (MPEG-7 standard descriptors). A small size ROI collection manually annotated by experts is used for both training and testing of a simple classifier (1-NN). The performance of each descriptor under study (Color Structure Descriptor, CSD; Color Layout descriptor, CLD; and Scalable Color Descriptor, SCD) is analysed by a nested-leave-one-out cross validation. The inner loop permits a individual descriptor configuration evaluation, while the outer loop yields an average performance comparison between different descriptors. Our results show that CSD had a better performance than SCD and CLD.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This work presents a Computer Vision prototype strategy for the automatic detection of mycotic infections on tomato crops. This Computer Vision method is based on the characterization of tomato leaflets (both healthy and early blight-infected regions of interest - ROIs) by color description (MPEG-7 standard descriptors). A small size ROI collection manually annotated by experts is used for both training and testing of a simple classifier (1-NN). The performance of each descriptor under study (Color Structure Descriptor, CSD; Color Layout descriptor, CLD; and Scalable Color Descriptor, SCD) is analysed by a nested-leave-one-out cross validation. The inner loop permits a individual descriptor configuration evaluation, while the outer loop yields an average performance comparison between different descriptors. Our results show that CSD had a better performance than SCD and CLD.
基于颜色分类策略的番茄早疫病自动检测
本文提出了一种用于番茄真菌感染自动检测的计算机视觉原型策略。这种计算机视觉方法是基于通过颜色描述(MPEG-7标准描述符)对番茄小叶(健康和早期枯萎病感染的感兴趣区域- roi)进行表征。由专家手动标注的小型ROI集合用于简单分类器(1-NN)的训练和测试。所研究的每个描述子的性能(颜色结构描述子,CSD;颜色布局描述符,CLD;和可伸缩颜色描述符(SCD)通过嵌套留一交叉验证进行分析。内部循环允许单独的描述符配置评估,而外部循环产生不同描述符之间的平均性能比较。结果表明,CSD比SCD和CLD具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信