{"title":"An improvement LQP method for nonlinear complementarity problems","authors":"X. Qin","doi":"10.23952/asvao.2.2020.1.06","DOIUrl":null,"url":null,"abstract":". In this paper, we propose a new modified logarithmic-quadratic proximal method for solving the nonlinear complementarity problem. An easily measurable error term is proposed with further relaxed error bound and a new step length is employed to reach substantial progress in each iteration. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method.","PeriodicalId":362333,"journal":{"name":"Applied Set-Valued Analysis and Optimization","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Set-Valued Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23952/asvao.2.2020.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. In this paper, we propose a new modified logarithmic-quadratic proximal method for solving the nonlinear complementarity problem. An easily measurable error term is proposed with further relaxed error bound and a new step length is employed to reach substantial progress in each iteration. Preliminary numerical experiments are included to illustrate the advantage and efficiency of the proposed method.