Gray Level Co-Occurrence Matrix Computation Based On Haar Wavelet

M. Mokji, S. Abu-Bakar
{"title":"Gray Level Co-Occurrence Matrix Computation Based On Haar Wavelet","authors":"M. Mokji, S. Abu-Bakar","doi":"10.1109/CGIV.2007.45","DOIUrl":null,"url":null,"abstract":"In this paper, a new computation for gray level co-occurrence matrix (GLCM) is proposed. The aim is to reduce the computation burden of the original GLCM computation. The proposed computation will be based on Haar wavelet transform. Haar wavelet transform is chosen because the resulting wavelet bands are strongly correlated with the orientation elements in the GLCM computation. The second reason is because the total pixel entries for Haar wavelet transform is always minimum. Thus, the GLCM computation burden can be reduced. The proposed computation is tested with the classification performance of the Brodatz texture images. Although the aim is to achieve at least similar performance with the original GLCM computation, the proposed computation gives a slightly better performance compare to the original GLCM computation.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

In this paper, a new computation for gray level co-occurrence matrix (GLCM) is proposed. The aim is to reduce the computation burden of the original GLCM computation. The proposed computation will be based on Haar wavelet transform. Haar wavelet transform is chosen because the resulting wavelet bands are strongly correlated with the orientation elements in the GLCM computation. The second reason is because the total pixel entries for Haar wavelet transform is always minimum. Thus, the GLCM computation burden can be reduced. The proposed computation is tested with the classification performance of the Brodatz texture images. Although the aim is to achieve at least similar performance with the original GLCM computation, the proposed computation gives a slightly better performance compare to the original GLCM computation.
基于Haar小波的灰度共生矩阵计算
本文提出了一种新的灰度共生矩阵的计算方法。目的是减少原GLCM计算的计算负担。该算法基于Haar小波变换。在GLCM计算中,选择Haar小波变换是因为得到的小波带与方向元素有很强的相关性。第二个原因是因为哈尔小波变换的总像素条目总是最小的。因此,可以减少GLCM的计算负担。用Brodatz纹理图像的分类性能对该算法进行了验证。虽然目标是达到至少与原始GLCM计算相似的性能,但与原始GLCM计算相比,所提出的计算提供了稍微更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信