Using Statistical Models to Predict Software Regressions

A. Tarvo
{"title":"Using Statistical Models to Predict Software Regressions","authors":"A. Tarvo","doi":"10.1109/ISSRE.2008.21","DOIUrl":null,"url":null,"abstract":"Incorrect changes made to the stable parts of a software system can cause failures - software regressions. Early detection of faulty code changes can be beneficial for the quality of a software system when these errors can be fixed before the system is released. In this paper, a statistical model for predicting software regressions is proposed. The model predicts risk of regression for a code change by using software metrics: type and size of the change, number of affected components, dependency metrics, developerpsilas experience and code metrics of the affected components. Prediction results could be used to prioritize testing of changes: the higher is the risk of regression for the change, the more thorough testing it should receive.","PeriodicalId":448275,"journal":{"name":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 19th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2008.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Incorrect changes made to the stable parts of a software system can cause failures - software regressions. Early detection of faulty code changes can be beneficial for the quality of a software system when these errors can be fixed before the system is released. In this paper, a statistical model for predicting software regressions is proposed. The model predicts risk of regression for a code change by using software metrics: type and size of the change, number of affected components, dependency metrics, developerpsilas experience and code metrics of the affected components. Prediction results could be used to prioritize testing of changes: the higher is the risk of regression for the change, the more thorough testing it should receive.
用统计模型预测软件回归
对软件系统的稳定部分所做的不正确的更改可能导致失败——软件回归。如果可以在系统发布之前修复这些错误,那么早期检测错误代码更改对软件系统的质量是有益的。本文提出了一种预测软件回归的统计模型。该模型通过使用软件度量来预测代码变更的回归风险:变更的类型和大小、受影响组件的数量、依赖度量、开发人员经验和受影响组件的代码度量。预测结果可以用来确定变更测试的优先级:变更回归的风险越高,它应该接受的测试就越彻底。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信