Sufficient conditions for stable recovery of sparse autoregressive models

A. Kazemipour, B. Babadi, Min Wu
{"title":"Sufficient conditions for stable recovery of sparse autoregressive models","authors":"A. Kazemipour, B. Babadi, Min Wu","doi":"10.1109/CISS.2016.7460535","DOIUrl":null,"url":null,"abstract":"We consider the problem of estimating the parameters of autoregressive linear models with subGaussian innovations from limited observations, where the history of the process composes the covariate. We analyze the performance of lasso type and greedy estimators and characterize the sampling tradeoffs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear models with i.i.d. covariates to autoregressive processes with highly interdependent covariates. We further provide simulation studies as well as application to financial data which confirm our theoretical predictions.","PeriodicalId":346776,"journal":{"name":"2016 Annual Conference on Information Science and Systems (CISS)","volume":"30 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Annual Conference on Information Science and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2016.7460535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the problem of estimating the parameters of autoregressive linear models with subGaussian innovations from limited observations, where the history of the process composes the covariate. We analyze the performance of lasso type and greedy estimators and characterize the sampling tradeoffs required for stable recovery in the non-asymptotic regime. Our results extend those of compressed sensing for linear models with i.i.d. covariates to autoregressive processes with highly interdependent covariates. We further provide simulation studies as well as application to financial data which confirm our theoretical predictions.
稀疏自回归模型稳定恢复的充分条件
我们考虑从有限观测值估计具有亚高斯创新的自回归线性模型的参数问题,其中过程的历史构成协变量。我们分析了lasso型估计器和贪婪估计器的性能,并描述了在非渐近状态下稳定恢复所需的采样权衡。我们的研究结果将线性模型的压缩感知扩展到具有高度相互依赖协变量的自回归过程。我们进一步提供了模拟研究和金融数据的应用,以证实我们的理论预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信