Generating language distance metrics by language recognition using acoustic features

Le Sun, Roland Hu, Huimin Yu, T. Sluckin
{"title":"Generating language distance metrics by language recognition using acoustic features","authors":"Le Sun, Roland Hu, Huimin Yu, T. Sluckin","doi":"10.1109/WCSP.2016.7752528","DOIUrl":null,"url":null,"abstract":"A language recognition system is used to build quantitative measure of language distance. The OpenEAR toolkit is used to extract more than 6,000 features per speech sample. The features consist of 56 low level descriptors (LLDs) and their Delta and Delta Delta values, the corresponding 39 functionals. The language model training component is based on the Gentle AdaBoost algorithm. When tested on a group of 10 principally Indo-European languages, the language recognition system performs comparatively to other language recognizers. The UPGMA tree built from the interlanguage distances identifies the major subgroups of Indo-European. Genetic algorithms are also implemented to generate the language map on the 2D plane. Although some errors remain, the obtained language tree and map are indicators of language relationships. We discuss errors in our system and more generally perspectives for the use of sound file classifiers in historical linguistics.","PeriodicalId":158117,"journal":{"name":"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2016.7752528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A language recognition system is used to build quantitative measure of language distance. The OpenEAR toolkit is used to extract more than 6,000 features per speech sample. The features consist of 56 low level descriptors (LLDs) and their Delta and Delta Delta values, the corresponding 39 functionals. The language model training component is based on the Gentle AdaBoost algorithm. When tested on a group of 10 principally Indo-European languages, the language recognition system performs comparatively to other language recognizers. The UPGMA tree built from the interlanguage distances identifies the major subgroups of Indo-European. Genetic algorithms are also implemented to generate the language map on the 2D plane. Although some errors remain, the obtained language tree and map are indicators of language relationships. We discuss errors in our system and more generally perspectives for the use of sound file classifiers in historical linguistics.
基于声学特征的语言识别生成语言距离度量
利用语言识别系统建立语言距离的定量度量。OpenEAR工具包用于提取每个语音样本的6000多个特征。特征由56个低级描述符(lld)和它们的δ和δ δ值,以及相应的39个函数组成。语言模型训练部分基于Gentle AdaBoost算法。在对10种主要是印欧语系的语言进行测试时,该语言识别系统的表现相对于其他语言识别器。UPGMA树根据语际距离建立,确定了印欧语的主要亚群。采用遗传算法在二维平面上生成语言地图。虽然仍然存在一些错误,但获得的语言树和地图是语言关系的指示器。我们讨论了我们的系统中的错误,以及在历史语言学中使用声音文件分类器的更普遍的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信