Non-invasive differential diagnosis of dental periapical lesions in cone-beam CT

Arturo Flores, Steven J. Rysavy, R. Enciso, K. Okada
{"title":"Non-invasive differential diagnosis of dental periapical lesions in cone-beam CT","authors":"Arturo Flores, Steven J. Rysavy, R. Enciso, K. Okada","doi":"10.1109/ISBI.2009.5193110","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel application of computer-aided diagnosis to a clinically significant dental problem: non-invasive differential diagnosis of periapical lesions using cone-beam computed tomography (CBCT). The proposed semi-automatic solution combines graph-theoretic random walks segmentation and machine learning-based LDA and AdaBoost classifiers. Our quantitative experiments show the effectiveness of the proposed method by demonstrating 94.1% correct classification rate. Furthermore, we compare classification performances with two independent ground-truth sets from the biopsy and CBCT diagnoses. ROC analysis reveals our method improves accuracy for both cases and behaves more in agreement with the CBCT diagnosis, supporting a hypothesis presented in a recent clinical report.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes a novel application of computer-aided diagnosis to a clinically significant dental problem: non-invasive differential diagnosis of periapical lesions using cone-beam computed tomography (CBCT). The proposed semi-automatic solution combines graph-theoretic random walks segmentation and machine learning-based LDA and AdaBoost classifiers. Our quantitative experiments show the effectiveness of the proposed method by demonstrating 94.1% correct classification rate. Furthermore, we compare classification performances with two independent ground-truth sets from the biopsy and CBCT diagnoses. ROC analysis reveals our method improves accuracy for both cases and behaves more in agreement with the CBCT diagnosis, supporting a hypothesis presented in a recent clinical report.
牙根尖周病变的锥束CT无创鉴别诊断
本文提出了一种新的计算机辅助诊断应用于临床重要的牙科问题:使用锥形束计算机断层扫描(CBCT)进行根尖周围病变的无创鉴别诊断。提出的半自动解决方案结合了图论随机行走分割和基于机器学习的LDA和AdaBoost分类器。我们的定量实验证明了该方法的有效性,分类正确率达到94.1%。此外,我们比较了来自活检和CBCT诊断的两个独立的基真集的分类性能。ROC分析显示,我们的方法提高了这两种情况的准确性,并且与CBCT诊断更加一致,支持了最近临床报告中提出的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信