Exact Moment Matching for Efficient Importance Functions in SMC Methods

S. Saha, P. Mandal, Y. Boers, H. Driessen
{"title":"Exact Moment Matching for Efficient Importance Functions in SMC Methods","authors":"S. Saha, P. Mandal, Y. Boers, H. Driessen","doi":"10.1109/NSSPW.2006.4378813","DOIUrl":null,"url":null,"abstract":"In this article we introduce a new proposal distribution to be used in conjunction with the sequential Monte Carlo (SMC) method of solving non-linear filtering problem. The proposal distribution incorporates all the information about the to be estimated current state form both the available state and observation processes. This makes it more effective than the state transition density which is more commonly used but ignores the recent observation. Because of its Gaussian nature it is also very easy to implement. We show further that the introduced proposal performs better than other similar importance functions which also incorporate both state and observations.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article we introduce a new proposal distribution to be used in conjunction with the sequential Monte Carlo (SMC) method of solving non-linear filtering problem. The proposal distribution incorporates all the information about the to be estimated current state form both the available state and observation processes. This makes it more effective than the state transition density which is more commonly used but ignores the recent observation. Because of its Gaussian nature it is also very easy to implement. We show further that the introduced proposal performs better than other similar importance functions which also incorporate both state and observations.
SMC方法中有效重要函数的精确矩匹配
在本文中,我们介绍了一种新的建议分布,将其与顺序蒙特卡罗(SMC)方法结合使用来解决非线性滤波问题。建议分布包含了关于可用状态和观察过程中要估计的当前状态的所有信息。这使得它比更常用的状态转移密度更有效,但忽略了最近的观察。由于它的高斯性质,它也很容易实现。我们进一步表明,所引入的建议比其他同样包含状态和观测值的类似重要函数表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信