Image deconvolution using a stochastic differential equation approach

X. Descombes, M. Lebellego, E. Zhizhina
{"title":"Image deconvolution using a stochastic differential equation approach","authors":"X. Descombes, M. Lebellego, E. Zhizhina","doi":"10.5220/0002064701570164","DOIUrl":null,"url":null,"abstract":"Abstract: We consider the problem of image deconvolution. We foccus on a Bayesian approach which consists of maximizing an energy obtained by a Markov Random Field modeling. MRFs are classically optimized by a MCMC sampler embeded into a simulated annealing scheme. In a previous work, we have shown that, in the context of image denoising, a diffusion process can outperform the MCMC approach in term of computational time. Herein, we extend this approach to the case of deconvolution. We first study the case where the kernel is known. Then, we address the myopic and blind deconvolutions.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002064701570164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract: We consider the problem of image deconvolution. We foccus on a Bayesian approach which consists of maximizing an energy obtained by a Markov Random Field modeling. MRFs are classically optimized by a MCMC sampler embeded into a simulated annealing scheme. In a previous work, we have shown that, in the context of image denoising, a diffusion process can outperform the MCMC approach in term of computational time. Herein, we extend this approach to the case of deconvolution. We first study the case where the kernel is known. Then, we address the myopic and blind deconvolutions.
使用随机微分方程方法的图像反卷积
摘要:研究图像反卷积问题。我们的重点是贝叶斯方法,其中包括最大的能量获得一个马尔可夫随机场建模。典型的MRFs优化是由MCMC采样器嵌入到模拟退火方案中。在之前的工作中,我们已经表明,在图像去噪的背景下,扩散过程在计算时间方面优于MCMC方法。在这里,我们将这种方法扩展到反卷积的情况。我们首先研究核函数已知的情况。然后,我们讨论近视和失明的反卷积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信