Epistemological aspect of topic modelling in the social sciences: Latent Dirichlet Allocation

M. Baranowski
{"title":"Epistemological aspect of topic modelling in the social sciences: Latent Dirichlet Allocation","authors":"M. Baranowski","doi":"10.14746/pk.2022.4.1.1","DOIUrl":null,"url":null,"abstract":"Aware of the challenges faced by the social sciences in publishing a massive volume of research papers, it is worth looking at a novel but no longer so new ways of machine learning for the purposes of literature review. To this end, I explore a probabilistic topic model called Latent Dirichlet Allocation (LDA) in the context of the epistemological challenge of analysing texts on social welfare. This paper aims to describe how the LDA algorithm works for large corpora of data, along with its advantages and disadvantages. This preliminary characterisation of an inductive method for automated text analysis is intended to give a brief overview of how LDA can be used in the social sciences.","PeriodicalId":200024,"journal":{"name":"Przegląd Krytyczny","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przegląd Krytyczny","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14746/pk.2022.4.1.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aware of the challenges faced by the social sciences in publishing a massive volume of research papers, it is worth looking at a novel but no longer so new ways of machine learning for the purposes of literature review. To this end, I explore a probabilistic topic model called Latent Dirichlet Allocation (LDA) in the context of the epistemological challenge of analysing texts on social welfare. This paper aims to describe how the LDA algorithm works for large corpora of data, along with its advantages and disadvantages. This preliminary characterisation of an inductive method for automated text analysis is intended to give a brief overview of how LDA can be used in the social sciences.
社会科学主题建模的认识论方面:潜在狄利克雷分配
意识到社会科学在发表大量研究论文时所面临的挑战,为了文献综述的目的,值得研究一种新颖但不再那么新的机器学习方法。为此,我在分析社会福利文本的认识论挑战的背景下探索了一个称为潜在狄利克雷分配(LDA)的概率主题模型。本文旨在描述LDA算法如何适用于大型语料库,以及它的优点和缺点。对自动文本分析的归纳方法的初步描述旨在简要概述LDA如何在社会科学中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信