{"title":"Circ_0041732 regulates tumor properties of triple-negative breast cancer cells by the miR-149-5p/FGF5 pathway","authors":"Hongyang Li, Hailin Yin, Yao Yan","doi":"10.1177/03936155221086599","DOIUrl":null,"url":null,"abstract":"Background Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties. Methods The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay. Results Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo. Conclusion Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.","PeriodicalId":177423,"journal":{"name":"The International Journal of Biological Markers","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Journal of Biological Markers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/03936155221086599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Background Triple-negative breast cancer (TNBC) is a subtype of breast cancers with a high recurrence and mortality. The important factors promoting the TNBC process have not been fully identified. In this research, the role of a TNBC-related circular RNA (circRNA), circ_0041732, was revealed in TNBC cell tumor properties. Methods The expression levels of circ_0041732, microRNA-149-5p (miR-149-5p) and fibroblast growth factor 5 (FGF5) were detected by quantitative real-time polymerase chain reaction. The protein expression was determined by Western blot analysis or immunohistochemistry assay. Cell proliferation was detected by cell counting kit-8 and cell colony formation assays. Cell apoptosis was analyzed by flow cytometry and caspase-3 activity assays. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. Cell angiogenic capacity was investigated by a tube formation assay. The targeting relationship between miR-149-5p and circ_0041732 or FGF5 was identified by dual-luciferase reporter and RNA immunoprecipitation assays. The impacts of circ_0041732 knockdown on tumor formation were determined by an in vivo assay. Results Circ_0041732 and FGF5 expression were significantly upregulated, whereas miR-149-5p was downregulated in TNBC tissues and cells compared with normal breast tissues and cells, respectively. Circ_0041732 silencing inhibited TNBC cell proliferation, migration, invasion, and tube formation, but induced apoptosis. Additionally, circ_0041732 regulated TNBC cell tumor properties by binding to miR-149-5p. MiR-149-5p also modulated TNBC cell tumor properties by targeting FGF5. Furthermore, circ_0041732 knockdown hindered tumor formation in vivo. Conclusion Circ_0041732 silencing suppressed TNBC cell tumor properties by decreasing FGF5 expression through miR-149-5p. This finding demonstrated that circ_0041732 had the potential as a therapeutic target for TNBC.