Information Geometry of the Locally Most Powerful Test

Yongqiang Cheng, Xiaoqiang Hua, Hao Wu, Hongqiang Wang
{"title":"Information Geometry of the Locally Most Powerful Test","authors":"Yongqiang Cheng, Xiaoqiang Hua, Hao Wu, Hongqiang Wang","doi":"10.1109/ICCT56141.2022.10073185","DOIUrl":null,"url":null,"abstract":"The locally most powerful (LMP) test for weak signal detection is studied from a information-geometric perspective. In such a framework, the LMP test is identified as the norm of natural whitened gradient on the statistical manifold consisting of a family of parametric probability distributions, which indicates that the LMP test pursues the steepest learning directions from the null hypothesis to the empirical distribution of the observed data on the manifold. A concrete geometrical interpretation of the LMP test in the theory of information geometry is presented, which leads to an immediate extension of the LMP test to a vector valued parameter case. Example of multi-component sinusoidal signal detection under low SNR conditions confirms a practical importance of the extended test.","PeriodicalId":294057,"journal":{"name":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","volume":"159 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Communication Technology (ICCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT56141.2022.10073185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The locally most powerful (LMP) test for weak signal detection is studied from a information-geometric perspective. In such a framework, the LMP test is identified as the norm of natural whitened gradient on the statistical manifold consisting of a family of parametric probability distributions, which indicates that the LMP test pursues the steepest learning directions from the null hypothesis to the empirical distribution of the observed data on the manifold. A concrete geometrical interpretation of the LMP test in the theory of information geometry is presented, which leads to an immediate extension of the LMP test to a vector valued parameter case. Example of multi-component sinusoidal signal detection under low SNR conditions confirms a practical importance of the extended test.
局部最强大测试的信息几何
从信息几何的角度研究了微弱信号检测的局部最强检验。在该框架中,LMP检验被识别为由一组参数概率分布组成的统计流形上的自然白化梯度的范数,这表明LMP检验从零假设到流形上观测数据的经验分布的学习方向是最陡峭的。给出了信息几何理论中LMP检验的具体几何解释,从而将LMP检验推广到向量值参数情况。低信噪比条件下的多分量正弦信号检测实例验证了扩展测试的实际重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信