A Comparison of Column Subset Selection Methods for Unsupervised Band Subset Selection in Hyperspectral Imagery

Maher Aldeghlawi, M. Velez-Reyes
{"title":"A Comparison of Column Subset Selection Methods for Unsupervised Band Subset Selection in Hyperspectral Imagery","authors":"Maher Aldeghlawi, M. Velez-Reyes","doi":"10.1109/SSIAI.2018.8470360","DOIUrl":null,"url":null,"abstract":"This paper explores the use of column subset selection (CSS) for unsupervised band subset selection (BSS) in hyperspectral imaging. CSS is the problem of selecting the most independent columns of a matrix. Many deterministic and randomized algorithms have been proposed in the literature for CSS. This paper presents a comparison between different algorithms for CSS for BSS. The cosine of the angle between the range space spanned by the selected bands and the corresponding left singular vectors is used to evaluate the quality of the selected bands to represent the image. Numerical experiments are conducted using multispectral and hyperspectral data. Results show that SVDSS outperforms other deterministic algorithms while producing comparable results to a 2-stage randomized CSS in small images and in centered data. However, the randomized algorithm significantly outperforms deterministic approaches in large images.","PeriodicalId":422209,"journal":{"name":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSIAI.2018.8470360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper explores the use of column subset selection (CSS) for unsupervised band subset selection (BSS) in hyperspectral imaging. CSS is the problem of selecting the most independent columns of a matrix. Many deterministic and randomized algorithms have been proposed in the literature for CSS. This paper presents a comparison between different algorithms for CSS for BSS. The cosine of the angle between the range space spanned by the selected bands and the corresponding left singular vectors is used to evaluate the quality of the selected bands to represent the image. Numerical experiments are conducted using multispectral and hyperspectral data. Results show that SVDSS outperforms other deterministic algorithms while producing comparable results to a 2-stage randomized CSS in small images and in centered data. However, the randomized algorithm significantly outperforms deterministic approaches in large images.
高光谱图像无监督波段子集选择的列子集选择方法比较
本文探讨了在高光谱成像中使用列子集选择(CSS)进行无监督波段子集选择(BSS)。CSS是选择矩阵中最独立的列的问题。文献中提出了许多确定性和随机化的CSS算法。本文对不同的CSS算法进行了比较。选取的波段与对应的左奇异向量所张成的距离空间夹角的余弦值用于评价选取的波段表示图像的质量。利用多光谱和高光谱数据进行了数值实验。结果表明,在小图像和中心数据中,SVDSS在产生与2阶段随机CSS相当的结果时优于其他确定性算法。然而,随机算法在大图像中明显优于确定性方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信