{"title":"Interval exchanges, admissibility and branching Rauzy induction","authors":"F. Dolce, D. Perrin","doi":"10.1051/ita/2017004","DOIUrl":null,"url":null,"abstract":"We introduce a definition of admissibility for subintervals in interval exchange transformations. Using this notion, we prove a property of the natural codings of interval exchange transformations, namely that any derived set of a regular interval exchange set is a regular interval exchange set with the same number of intervals. Derivation is taken here with respect to return words. We characterize the admissible intervals using a branching version of the Rauzy induction. We also study the case of regular interval exchange transformations defined over a quadratic field and show that the set of factors of such a transformation is primitive morphic. The proof uses an extension of a result of Boshernitzan and Carroll.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2017004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
We introduce a definition of admissibility for subintervals in interval exchange transformations. Using this notion, we prove a property of the natural codings of interval exchange transformations, namely that any derived set of a regular interval exchange set is a regular interval exchange set with the same number of intervals. Derivation is taken here with respect to return words. We characterize the admissible intervals using a branching version of the Rauzy induction. We also study the case of regular interval exchange transformations defined over a quadratic field and show that the set of factors of such a transformation is primitive morphic. The proof uses an extension of a result of Boshernitzan and Carroll.