{"title":"On the complexity of approximating the VC dimension","authors":"Elchanan Mossel, C. Umans","doi":"10.1109/CCC.2001.933889","DOIUrl":null,"url":null,"abstract":"We study the complexity of approximating the VC dimension of a collection of sets, when the sets are encoded succinctly by a small circuit. We show that this problem is: /spl Sigma//sub 3//sup p/-hard to approximate to within a factor 2-/spl epsiv/ for any /spl epsiv/>0; approximable in A/spl Mscr/ to within a factor 2; and A/spl Mscr/-hard to approximate to within a factor N/sup /spl epsiv// for some constant /spl epsiv/>0. To obtain the /spl Sigma//sub 3//sup 9/-hardness results we solve a randomness extraction problem using list-decodable binary codes; for the positive results we utilize the Sauer-Shelah(-Perles) Lemma. The exact value of /spl epsiv/ in the A/spl Mscr/-hardness result depends on the degree achievable by explicit disperser constructions.","PeriodicalId":240268,"journal":{"name":"Proceedings 16th Annual IEEE Conference on Computational Complexity","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 16th Annual IEEE Conference on Computational Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2001.933889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
We study the complexity of approximating the VC dimension of a collection of sets, when the sets are encoded succinctly by a small circuit. We show that this problem is: /spl Sigma//sub 3//sup p/-hard to approximate to within a factor 2-/spl epsiv/ for any /spl epsiv/>0; approximable in A/spl Mscr/ to within a factor 2; and A/spl Mscr/-hard to approximate to within a factor N/sup /spl epsiv// for some constant /spl epsiv/>0. To obtain the /spl Sigma//sub 3//sup 9/-hardness results we solve a randomness extraction problem using list-decodable binary codes; for the positive results we utilize the Sauer-Shelah(-Perles) Lemma. The exact value of /spl epsiv/ in the A/spl Mscr/-hardness result depends on the degree achievable by explicit disperser constructions.