A scalable algorithm for single-linkage hierarchical clustering on distributed-memory architectures

W. Hendrix, Diana Palsetia, Md. Mostofa Ali Patwary, Ankit Agrawal, W. Liao, A. Choudhary
{"title":"A scalable algorithm for single-linkage hierarchical clustering on distributed-memory architectures","authors":"W. Hendrix, Diana Palsetia, Md. Mostofa Ali Patwary, Ankit Agrawal, W. Liao, A. Choudhary","doi":"10.1109/LDAV.2013.6675153","DOIUrl":null,"url":null,"abstract":"Hierarchical clustering is a fundamental and widely-used clustering algorithm with many advantages over traditional partitional clustering. Due to the explosion in size of modern scientific datasets, there is a pressing need for scalable analytics algorithms, but good scaling is difficult to achieve for hierarchical clustering due to data dependencies inherent in the algorithm. To the best of our knowledge, no previous work on parallel hierarchical clustering has shown scalability beyond a couple hundred processes. In this paper, we present PINK, a scalable parallel algorithm for single-linkage hierarchical clustering based on decomposing a problem instance into two different types of subproblems. Despite the heterogeneous workloads, our algorithm exhibits good load balancing, as well as low memory requirements and a communication pattern that is both low-volume and deterministic. Evaluating PINK on up to 6050 processes, we find that it achieves speedups up to approximately 6600.","PeriodicalId":266607,"journal":{"name":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LDAV.2013.6675153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Hierarchical clustering is a fundamental and widely-used clustering algorithm with many advantages over traditional partitional clustering. Due to the explosion in size of modern scientific datasets, there is a pressing need for scalable analytics algorithms, but good scaling is difficult to achieve for hierarchical clustering due to data dependencies inherent in the algorithm. To the best of our knowledge, no previous work on parallel hierarchical clustering has shown scalability beyond a couple hundred processes. In this paper, we present PINK, a scalable parallel algorithm for single-linkage hierarchical clustering based on decomposing a problem instance into two different types of subproblems. Despite the heterogeneous workloads, our algorithm exhibits good load balancing, as well as low memory requirements and a communication pattern that is both low-volume and deterministic. Evaluating PINK on up to 6050 processes, we find that it achieves speedups up to approximately 6600.
分布式内存体系结构上单链接分层聚类的可扩展算法
层次聚类是一种基本的、应用广泛的聚类算法,与传统的分区聚类相比具有许多优点。由于现代科学数据集规模的爆炸式增长,迫切需要可扩展的分析算法,但由于算法固有的数据依赖性,很难实现良好的可扩展性。据我们所知,以前关于并行分层集群的工作还没有显示出超过几百个进程的可伸缩性。本文提出了一种基于将问题实例分解为两个不同类型子问题的单链接分层聚类的可扩展并行算法PINK。尽管存在异构工作负载,但我们的算法显示出良好的负载平衡,以及低内存需求和低容量和确定性的通信模式。在多达6050个进程上评估PINK,我们发现它达到了大约6600的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信