Microblogging Queries on Graph Databases: An Introspection

Oshini Goonetilleke, Saket K. Sathe, T. Sellis, Xiuzhen Zhang
{"title":"Microblogging Queries on Graph Databases: An Introspection","authors":"Oshini Goonetilleke, Saket K. Sathe, T. Sellis, Xiuzhen Zhang","doi":"10.1145/2764947.2764952","DOIUrl":null,"url":null,"abstract":"Microblogging data is growing at a rapid pace. This poses new challenges to the data management systems, such as graph databases, that are typically suitable for analyzing such data. In this paper, we share our experience on executing a wide variety of micro-blogging queries on two popular graph databases: Neo4j and Sparksee. Our queries are designed to be relevant to popular applications of micro-blogging data. The queries are executed on a large real graph data set comprising of nearly 50 million nodes and 326 million edges.","PeriodicalId":144860,"journal":{"name":"Proceedings of the GRADES'15","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the GRADES'15","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2764947.2764952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Microblogging data is growing at a rapid pace. This poses new challenges to the data management systems, such as graph databases, that are typically suitable for analyzing such data. In this paper, we share our experience on executing a wide variety of micro-blogging queries on two popular graph databases: Neo4j and Sparksee. Our queries are designed to be relevant to popular applications of micro-blogging data. The queries are executed on a large real graph data set comprising of nearly 50 million nodes and 326 million edges.
基于图数据库的微博查询:一个反思
微博数据正在快速增长。这对数据管理系统(如图形数据库)提出了新的挑战,这些系统通常适合分析此类数据。在本文中,我们分享了在两个流行的图形数据库:Neo4j和Sparksee上执行各种微博客查询的经验。我们的查询被设计成与微博数据的流行应用相关。这些查询是在一个由近5000万个节点和3.26亿个边组成的大型真实图数据集上执行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信