Kernel learning with nonconvex ramp loss

Xijun Liang, Zhipeng Zhang, Xingke Chen, Ling Jian
{"title":"Kernel learning with nonconvex ramp loss","authors":"Xijun Liang, Zhipeng Zhang, Xingke Chen, Ling Jian","doi":"10.1002/sam.11588","DOIUrl":null,"url":null,"abstract":"We study the kernel learning problems with ramp loss, a nonconvex but noise‐resistant loss function. In this work, we justify the validity of ramp loss under the classical kernel learning framework. In particular, we show that the generalization bound for empirical ramp risk minimizer is similar to that of convex surrogate losses, which implies kernel learning with such loss function is not only noise‐resistant but, more importantly, statistically consistent. For adapting to real‐time data streams, we introduce PA‐ramp, a heuristic online algorithm based on the passive‐aggressive framework, to solve this learning problem. Empirically, with fewer support vectors, this algorithm achieves robust empirical performances on tested noisy scenarios.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We study the kernel learning problems with ramp loss, a nonconvex but noise‐resistant loss function. In this work, we justify the validity of ramp loss under the classical kernel learning framework. In particular, we show that the generalization bound for empirical ramp risk minimizer is similar to that of convex surrogate losses, which implies kernel learning with such loss function is not only noise‐resistant but, more importantly, statistically consistent. For adapting to real‐time data streams, we introduce PA‐ramp, a heuristic online algorithm based on the passive‐aggressive framework, to solve this learning problem. Empirically, with fewer support vectors, this algorithm achieves robust empirical performances on tested noisy scenarios.
具有非凸斜坡损失的核学习
我们研究了具有斜坡损失的核学习问题,斜坡损失是一种非凸但抗噪声的损失函数。在这项工作中,我们证明了斜坡损失在经典核学习框架下的有效性。特别是,我们表明经验斜坡风险最小化的泛化界与凸代理损失的泛化界相似,这意味着具有这种损失函数的核学习不仅具有抗噪声性,更重要的是,具有统计一致性。为了适应实时数据流,我们引入了一种基于被动-攻击框架的启发式在线算法PA - ramp来解决这一学习问题。经验上,在较少的支持向量下,该算法在测试的噪声场景下具有鲁棒的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信