Design Considerations for High-power-density IPT Pads using Nanocrystalline Ribbon Cores

Daniel E. Gaona, T. Long
{"title":"Design Considerations for High-power-density IPT Pads using Nanocrystalline Ribbon Cores","authors":"Daniel E. Gaona, T. Long","doi":"10.1109/WoW47795.2020.9291288","DOIUrl":null,"url":null,"abstract":"In inductive power transfer, ferrite cores present several drawbacks such as brittleness, low permeability and saturation point, and sensitivity to temperature variation. Other materials such as nanocrystalline alloys are being considered as substitutes. They offer a higher permeability and saturation point. Also, they are more robust and stable with temperature. This paper reviews the design considerations that should be taken into account when designing nanocrystalline cores for IPT applications. Bespoke designs are required to mitigate the eddy-current losses which arise due to the high conductivity of the material. A WPT3 pad, 11 kW, is designed and compared to and identical pad with ferrite cores. Using nanocrystalline ribbon cores, a higher coupling factor, 11%, was achieved. Also, a 2% improvement in efficiency was measured. This is attributed to the lower hysteresis losses and higher coupling factor. Finally, the saturation limits were tested for both materials. Results confirm that, with nanocrystalline ribbon cores, higher power ratings and power densities can be achieved.","PeriodicalId":192132,"journal":{"name":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoW47795.2020.9291288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In inductive power transfer, ferrite cores present several drawbacks such as brittleness, low permeability and saturation point, and sensitivity to temperature variation. Other materials such as nanocrystalline alloys are being considered as substitutes. They offer a higher permeability and saturation point. Also, they are more robust and stable with temperature. This paper reviews the design considerations that should be taken into account when designing nanocrystalline cores for IPT applications. Bespoke designs are required to mitigate the eddy-current losses which arise due to the high conductivity of the material. A WPT3 pad, 11 kW, is designed and compared to and identical pad with ferrite cores. Using nanocrystalline ribbon cores, a higher coupling factor, 11%, was achieved. Also, a 2% improvement in efficiency was measured. This is attributed to the lower hysteresis losses and higher coupling factor. Finally, the saturation limits were tested for both materials. Results confirm that, with nanocrystalline ribbon cores, higher power ratings and power densities can be achieved.
采用纳米晶带状磁芯的高功率密度IPT衬垫的设计考虑
在感应功率传输中,铁氧体铁芯存在脆性、低磁导率和低饱和点、对温度变化敏感等缺点。其他材料,如纳米晶合金正在被考虑作为替代品。它们具有更高的渗透率和饱和点。此外,它们在温度下更加坚固和稳定。本文综述了在设计用于IPT应用的纳米晶核时应考虑的设计因素。需要定制设计来减轻由于材料的高导电性而产生的涡流损失。设计了一个11 kW的WPT3焊盘,并与具有铁氧体铁芯的相同焊盘进行了比较。采用纳米晶带状磁芯,实现了更高的耦合系数,达到11%。此外,效率也提高了2%。这是由于较低的迟滞损耗和较高的耦合系数。最后,对两种材料的饱和极限进行了测试。结果证实,纳米晶带状磁芯可以实现更高的额定功率和功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信