RRAM-based Neuromorphic Computing: Data Representation, Architecture, Logic, and Programming

Grace Li Zhang, Shuhang Zhang, Hai Li, Ulf Schlichtmann
{"title":"RRAM-based Neuromorphic Computing: Data Representation, Architecture, Logic, and Programming","authors":"Grace Li Zhang, Shuhang Zhang, Hai Li, Ulf Schlichtmann","doi":"10.1109/DSD57027.2022.00063","DOIUrl":null,"url":null,"abstract":"RRAM crossbars provide a promising hardware plat-form to accelerate matrix-vector multiplication in deep neural networks (DNNs). To exploit the efficiency of RRAM crossbars, extensive research ex-amining architecture, data representation, logic de-sign as well as device programming should be conducted. This extensive scope of research aspects is enabled and required by the versatility of RRAM cells and their organization in a computing system. These research aspects affect or benefit each other. Therefore, they should be considered systematically to achieve an efficient design in terms of design complexity and computational performance in accelerating DNNs. In this paper, we illustrate study exam-ples on these perspectives on RRAM crossbars, in-cluding data representation with pulse widths, archi-tecture improvement, implementation of logic functions using RRAM cells, and efficient programming of RRAM devices for accelerating DNNs.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

RRAM crossbars provide a promising hardware plat-form to accelerate matrix-vector multiplication in deep neural networks (DNNs). To exploit the efficiency of RRAM crossbars, extensive research ex-amining architecture, data representation, logic de-sign as well as device programming should be conducted. This extensive scope of research aspects is enabled and required by the versatility of RRAM cells and their organization in a computing system. These research aspects affect or benefit each other. Therefore, they should be considered systematically to achieve an efficient design in terms of design complexity and computational performance in accelerating DNNs. In this paper, we illustrate study exam-ples on these perspectives on RRAM crossbars, in-cluding data representation with pulse widths, archi-tecture improvement, implementation of logic functions using RRAM cells, and efficient programming of RRAM devices for accelerating DNNs.
基于随机存储器的神经形态计算:数据表示、体系结构、逻辑和编程
RRAM交叉条为加速深度神经网络(dnn)中矩阵向量乘法提供了一个很有前途的硬件平台。为了充分发挥RRAM横杆的效率,需要对其挖掘架构、数据表示、逻辑设计和器件编程进行广泛的研究。这种广泛的研究范围是由RRAM单元的多功能性及其在计算系统中的组织所启用和要求的。这些研究方面相互影响或相互促进。因此,在加速深度神经网络的设计复杂度和计算性能方面,应该系统地考虑它们,以实现有效的设计。在本文中,我们举例说明了这些关于RRAM交叉条的研究实例,包括脉冲宽度的数据表示,架构改进,使用RRAM单元实现逻辑功能,以及用于加速dnn的RRAM设备的有效编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信