On Optimizing Complex Stencils on GPUs

P. Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, A. Rountev, L. Pouchet, P. Sadayappan
{"title":"On Optimizing Complex Stencils on GPUs","authors":"P. Rawat, Miheer Vaidya, Aravind Sukumaran-Rajam, A. Rountev, L. Pouchet, P. Sadayappan","doi":"10.1109/IPDPS.2019.00073","DOIUrl":null,"url":null,"abstract":"Stencil computations are often the compute-intensive kernel in many scientific applications. With the increasing demand for computational accuracy, and the emergence of massively data-parallel high-bandwidth architectures like GPUs, stencils have steadily become more complex in terms of the stencil order, data accesses, and reuse patterns. Many prior efforts have focused on optimizing simpler stencil computations on various platforms. However, existing stencil code generators face challenges in optimizing such complex multi-statement stencil DAGs. This paper addresses the challenges in optimizing high-order stencil DAGs on GPUs by focusing on two key considerations: (1) enabling the domain expert to guide the code optimization, which may otherwise be extremely challenging for complex stencils; and (2) using bottleneck analysis via runtime profiling to guide the application of optimizations, and the tuning of various code generation parameters. We implement these abstractions in a prototype code generation framework termed Artemis, and evaluate its efficacy over multiple stencil kernels with varying complexity and operational intensity on an NVIDIA P100 GPU.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Stencil computations are often the compute-intensive kernel in many scientific applications. With the increasing demand for computational accuracy, and the emergence of massively data-parallel high-bandwidth architectures like GPUs, stencils have steadily become more complex in terms of the stencil order, data accesses, and reuse patterns. Many prior efforts have focused on optimizing simpler stencil computations on various platforms. However, existing stencil code generators face challenges in optimizing such complex multi-statement stencil DAGs. This paper addresses the challenges in optimizing high-order stencil DAGs on GPUs by focusing on two key considerations: (1) enabling the domain expert to guide the code optimization, which may otherwise be extremely challenging for complex stencils; and (2) using bottleneck analysis via runtime profiling to guide the application of optimizations, and the tuning of various code generation parameters. We implement these abstractions in a prototype code generation framework termed Artemis, and evaluate its efficacy over multiple stencil kernels with varying complexity and operational intensity on an NVIDIA P100 GPU.
基于gpu的复杂模板优化研究
在许多科学应用中,模板计算通常是计算密集型的核心。随着对计算精度的要求不断提高,以及大规模数据并行高带宽架构(如gpu)的出现,模板在模板顺序、数据访问和重用模式方面变得越来越复杂。许多先前的努力都集中在各种平台上优化更简单的模板计算。然而,现有的模板代码生成器在优化这种复杂的多语句模板dag方面面临着挑战。本文通过关注两个关键因素来解决在gpu上优化高阶模板dag的挑战:(1)使领域专家能够指导代码优化,否则这对于复杂的模板来说可能是极具挑战性的;(2)利用瓶颈分析通过运行时分析来指导应用程序的优化,以及各种代码生成参数的调优。我们在一个名为Artemis的原型代码生成框架中实现了这些抽象,并在NVIDIA P100 GPU上评估了其在多个具有不同复杂性和操作强度的模板内核上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信