Land-cover characterization and change detection using multitemporal MODIS NDVI data

R. Lunetta, J. Knight, J. Ediriwickrema
{"title":"Land-cover characterization and change detection using multitemporal MODIS NDVI data","authors":"R. Lunetta, J. Knight, J. Ediriwickrema","doi":"10.1109/AMTRSI.2005.1469870","DOIUrl":null,"url":null,"abstract":"Land-cover (LC) composition and conversions are important factors that affect ecosystem condition and function. These data are frequently used as a primary data source to generate landscape-based metrics to assess landscape condition at multiple assessment scales. The use of satellite-based remote sensor data has been widely applied to provide a cost-effective means to develop LC coverages over large geographic regions. Past and ongoing efforts for generating LC data for the United States have been implemented using an interagency consortium to share the substantial costs associated satellite data acquisition, processing and analysis. The first moderate resolution National Land-Cover Data (NLCD) set was developed for the conterminous United States using Landsat Thematic Mapper (TM) imagery collected between1991-1992 (Vogelmann et al., 1998). Currently, the 2001 NLCD is under development for all 50 States and the Commonwealth of Puerto Rico (Homer et al., 2004). The 2001 effort, building on the lessons learned from the 1991 NLCD, promises to provide a relatively high quality baseline LC product.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Land-cover (LC) composition and conversions are important factors that affect ecosystem condition and function. These data are frequently used as a primary data source to generate landscape-based metrics to assess landscape condition at multiple assessment scales. The use of satellite-based remote sensor data has been widely applied to provide a cost-effective means to develop LC coverages over large geographic regions. Past and ongoing efforts for generating LC data for the United States have been implemented using an interagency consortium to share the substantial costs associated satellite data acquisition, processing and analysis. The first moderate resolution National Land-Cover Data (NLCD) set was developed for the conterminous United States using Landsat Thematic Mapper (TM) imagery collected between1991-1992 (Vogelmann et al., 1998). Currently, the 2001 NLCD is under development for all 50 States and the Commonwealth of Puerto Rico (Homer et al., 2004). The 2001 effort, building on the lessons learned from the 1991 NLCD, promises to provide a relatively high quality baseline LC product.
基于MODIS NDVI数据的土地覆盖特征与变化检测
土地覆被的组成和转换是影响生态系统状况和功能的重要因素。这些数据经常被用作主要数据源,生成基于景观的指标,以在多个评估尺度上评估景观状况。基于卫星的遥感数据的使用已被广泛应用,为在大地理区域发展LC覆盖提供了一种具有成本效益的手段。过去和正在进行的为美国生成LC数据的工作已经通过一个机构间联盟来实施,以分担与卫星数据获取、处理和分析相关的大量费用。第一个中等分辨率的国家土地覆盖数据(NLCD)集是利用1991-1992年期间收集的Landsat Thematic Mapper (TM)图像为美国周边地区开发的(Vogelmann等,1998年)。目前,2001年全国人口统计正在为所有50个州和波多黎各联邦制定(Homer et al., 2004)。2001年的努力以1991年NLCD的经验教训为基础,承诺提供相对高质量的基准LC产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信