A Framework to Discover and Reuse Object-Oriented Options in Reinforcement Learning

R. Bonini, Felipe Leno da Silva, R. Glatt, Edison Spina, Anna Helena Reali Costa
{"title":"A Framework to Discover and Reuse Object-Oriented Options in Reinforcement Learning","authors":"R. Bonini, Felipe Leno da Silva, R. Glatt, Edison Spina, Anna Helena Reali Costa","doi":"10.1109/BRACIS.2018.00027","DOIUrl":null,"url":null,"abstract":"Reinforcement Learning is a successful yet slow technique to train autonomous agents. Option-based solutions can be used to accelerate learning and to transfer learned behaviors across tasks by encapsulating a partial policy. However, commonly these options are specific for a single task, do not take in account similar features between tasks and may not correspond exactly to an optimal behavior when transferred to another task. Therefore, unprincipled transfer might provide bad options to the agent, hampering the learning process. We here propose a way to discover and reuse learned object-oriented options in aprobabilistic way in order to enable better actuation choices to the agent in multiple different tasks. Our experimental evaluation show that our proposal is able to learn and successfully reuse options across different tasks.","PeriodicalId":405190,"journal":{"name":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2018.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Reinforcement Learning is a successful yet slow technique to train autonomous agents. Option-based solutions can be used to accelerate learning and to transfer learned behaviors across tasks by encapsulating a partial policy. However, commonly these options are specific for a single task, do not take in account similar features between tasks and may not correspond exactly to an optimal behavior when transferred to another task. Therefore, unprincipled transfer might provide bad options to the agent, hampering the learning process. We here propose a way to discover and reuse learned object-oriented options in aprobabilistic way in order to enable better actuation choices to the agent in multiple different tasks. Our experimental evaluation show that our proposal is able to learn and successfully reuse options across different tasks.
强化学习中发现和重用面向对象选项的框架
强化学习是训练自主智能体的一种成功但缓慢的技术。基于选项的解决方案可用于通过封装部分策略来加速学习和跨任务迁移学习到的行为。然而,通常这些选项是特定于单个任务的,不考虑任务之间的相似特征,并且在转移到另一个任务时可能不完全对应于最佳行为。因此,无原则的迁移可能会给agent提供糟糕的选择,阻碍学习过程。本文提出了一种以非概率方式发现和重用学习过的面向对象选项的方法,以便在多个不同任务中为智能体提供更好的驱动选择。我们的实验评估表明,我们的建议能够学习并成功地跨不同的任务重用选项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信