{"title":"Subspace Averaging for Source Enumeration in Large Arrays","authors":"I. Santamaría, D. Ramírez, L. Scharf","doi":"10.1109/SSP.2018.8450837","DOIUrl":null,"url":null,"abstract":"Subspace averaging is proposed and examined as a method of enumerating sources in large linear arrays, under conditions of low sample support. The key idea is to exploit shift invariance as a way of extracting many subspaces, which may then be approximated by a single extrinsic average. An automatic order determination rule for this extrinsic average is then the rule for determining the number of sources. Experimental results are presented for cases where the number of array snapshots is roughly half the number of array elements, and sources are well separated with respect to the Rayleigh limit.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Subspace averaging is proposed and examined as a method of enumerating sources in large linear arrays, under conditions of low sample support. The key idea is to exploit shift invariance as a way of extracting many subspaces, which may then be approximated by a single extrinsic average. An automatic order determination rule for this extrinsic average is then the rule for determining the number of sources. Experimental results are presented for cases where the number of array snapshots is roughly half the number of array elements, and sources are well separated with respect to the Rayleigh limit.