An MRF framework for joint registration and segmentation of natural and perfusion images

D. Mahapatra, Ying Sun
{"title":"An MRF framework for joint registration and segmentation of natural and perfusion images","authors":"D. Mahapatra, Ying Sun","doi":"10.1109/ICIP.2010.5651441","DOIUrl":null,"url":null,"abstract":"Registration and segmentation provide complementary information about each other. In this paper we propose a method for the joint registration and segmentation (JRS) of images using Markov random fields (MRFs). The use of MRFs allows us to formulate the problem as one of labeling and apply fast discrete optimization techniques like graph cuts. Graph cuts is able to overcome the limitations of previously used active contour frameworks namely, large number of iterations, risk of being trapped in local minima, and sensitivity to initialization. The labels in the MRF formulation indicate joint occurrence of displacement vectors and segmentation class and the energy formulation is able to capture their mutual dependency. Experiments on real patient perfusion data and natural images show that JRS gives better performance than conventional registration and segmentation methods.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5651441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Registration and segmentation provide complementary information about each other. In this paper we propose a method for the joint registration and segmentation (JRS) of images using Markov random fields (MRFs). The use of MRFs allows us to formulate the problem as one of labeling and apply fast discrete optimization techniques like graph cuts. Graph cuts is able to overcome the limitations of previously used active contour frameworks namely, large number of iterations, risk of being trapped in local minima, and sensitivity to initialization. The labels in the MRF formulation indicate joint occurrence of displacement vectors and segmentation class and the energy formulation is able to capture their mutual dependency. Experiments on real patient perfusion data and natural images show that JRS gives better performance than conventional registration and segmentation methods.
一种用于自然图像和灌注图像联合配准和分割的磁共振成像框架
配准和分割提供了彼此的补充信息。本文提出了一种利用马尔可夫随机场对图像进行联合配准和分割的方法。mrf的使用使我们能够将问题表述为标记之一,并应用快速离散优化技术,如图切割。图切割能够克服以前使用的主动轮廓框架的局限性,即大量的迭代,陷入局部最小值的风险,以及对初始化的敏感性。MRF公式中的标签表示位移向量和分割类共同出现,能量公式能够捕获它们的相互依赖性。在真实患者灌注数据和自然图像上的实验表明,JRS比传统的配准和分割方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信