ANALISIS FAKTOR PENANGANAN PANDEMI COVID-19, KINERJA OPERATOR, PERALATAN BONGKAR MUAT DAN EFEKTIVITAS LAPANGAN PENUMPUKAN TERHADAP PRODUKTIVITAS BONGKAR MUAT PETI KEMAS

Kurniawants Teguh Santoso, A. Fauzi, Andar Sri Sumantri
{"title":"ANALISIS FAKTOR PENANGANAN PANDEMI COVID-19, KINERJA OPERATOR, PERALATAN BONGKAR MUAT DAN EFEKTIVITAS LAPANGAN PENUMPUKAN TERHADAP PRODUKTIVITAS BONGKAR MUAT PETI KEMAS","authors":"Kurniawants Teguh Santoso, A. Fauzi, Andar Sri Sumantri","doi":"10.58192/profit.v1i4.325","DOIUrl":null,"url":null,"abstract":"In this study, loading and unloading productivity is influenced by several factors including : handling of the Covid-19 pandemic, operator performance, loading and unloading equipment and stacking field effectiveness. These factors have an important role in increasing loading and unloading productivity. The population in this study were employees of PT. Salam Pacific Indonesia Lines Medan Branch with a total sample of 109 respondents. The data analysis used in this research is descriptive analysis and quantitative analysis, the data is analyzed using multiple linear regression analysis using the Application (SPSS) Version 25. The results of the t-test hypothesis testing indicate that the Covid-19 Pandemic Handling, Operator Performance, Loading and Unloading Equipment and Stacking Field Effectiveness partially positive and significant effect on loading and unloading productivity. Based on the results of the study, it is known that the research model of the multiple linear regression equation resulted in the following equation : Y = 0,329 + 0,177X1 + 0,178X2 + 0,231X3 + 0,380X4 + µ. From the equation results show that the Covid-19 Pandemic Handling variable (X1) has (t count 2,004 > t table 1,983), Operator Performance variable (X2) has (t count 2,085 > t table 1,983), the Unloading Equipment variable (X3) has (t count 2,467 > t table 1,983) and the Stacking Field Effectiveness variable (X4) has (t count 4,243 > t table 1,983). As for the value of Adjusted R2 = 0.604. This means that 60.4% of the variation in the dependent variable (Y), namely the Unloading Productivity is explained by the independent variables, namely the Covid-19 Pandemic Handling (X1), Operator Performance (X2), Loading and Unloading Equipment (X3) and Stacking Field Effectiveness (X4). The remaining 100% - 60.4% = 39.6%, influenced by other variables outside the study.","PeriodicalId":419852,"journal":{"name":"Profit: Jurnal Manajemen, Bisnis dan Akuntansi","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Profit: Jurnal Manajemen, Bisnis dan Akuntansi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58192/profit.v1i4.325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, loading and unloading productivity is influenced by several factors including : handling of the Covid-19 pandemic, operator performance, loading and unloading equipment and stacking field effectiveness. These factors have an important role in increasing loading and unloading productivity. The population in this study were employees of PT. Salam Pacific Indonesia Lines Medan Branch with a total sample of 109 respondents. The data analysis used in this research is descriptive analysis and quantitative analysis, the data is analyzed using multiple linear regression analysis using the Application (SPSS) Version 25. The results of the t-test hypothesis testing indicate that the Covid-19 Pandemic Handling, Operator Performance, Loading and Unloading Equipment and Stacking Field Effectiveness partially positive and significant effect on loading and unloading productivity. Based on the results of the study, it is known that the research model of the multiple linear regression equation resulted in the following equation : Y = 0,329 + 0,177X1 + 0,178X2 + 0,231X3 + 0,380X4 + µ. From the equation results show that the Covid-19 Pandemic Handling variable (X1) has (t count 2,004 > t table 1,983), Operator Performance variable (X2) has (t count 2,085 > t table 1,983), the Unloading Equipment variable (X3) has (t count 2,467 > t table 1,983) and the Stacking Field Effectiveness variable (X4) has (t count 4,243 > t table 1,983). As for the value of Adjusted R2 = 0.604. This means that 60.4% of the variation in the dependent variable (Y), namely the Unloading Productivity is explained by the independent variables, namely the Covid-19 Pandemic Handling (X1), Operator Performance (X2), Loading and Unloading Equipment (X3) and Stacking Field Effectiveness (X4). The remaining 100% - 60.4% = 39.6%, influenced by other variables outside the study.
分析了COVID-19大流行治疗、操作性能、装货设备和平台对集装箱生产率的实地影响
在本研究中,装卸生产率受到几个因素的影响,包括:Covid-19大流行的处理、操作员的性能、装卸设备和堆场效率。这些因素对提高装卸效率具有重要作用。本研究的人群为PT. Salam Pacific Indonesia Lines棉兰分公司的员工,共109名受访者。本研究使用的数据分析是描述性分析和定量分析,数据分析使用多元线性回归分析,使用应用程序(SPSS)版本25。t检验的假设检验结果表明,疫情处理、操作人员绩效、装卸设备和堆场效率对装卸生产率有部分正显著影响。根据研究结果可知,多元线性回归方程的研究模型为:Y = 0.329 + 0.177x1 + 0.178x2 + 0.231x3 + 0.380x4 +µ。由方程结果可知,Covid-19大流行处理变量(X1)具有(t count 2004 > t表1983),操作人员绩效变量(X2)具有(t count 2,085 > t表1983),卸载设备变量(X3)具有(t count 2,467 > t表1983),堆垛场有效性变量(X4)具有(t count 4,243 > t表1983)。调整后的R2 = 0.604。这意味着因变量(Y)(即卸货生产率)的60.4%的变化可以由自变量解释,即Covid-19大流行处理(X1),操作员绩效(X2),装卸设备(X3)和堆垛现场效率(X4)。其余100% - 60.4% = 39.6%,受研究外其他变量的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信