Multi-scale Real-Time Grid Monitoring with Job Stream Mining

Xiangliang Zhang, M. Sebag, C. Germain
{"title":"Multi-scale Real-Time Grid Monitoring with Job Stream Mining","authors":"Xiangliang Zhang, M. Sebag, C. Germain","doi":"10.1109/CCGRID.2009.20","DOIUrl":null,"url":null,"abstract":"The ever increasing scale and complexity of large computational systems ask for sophisticated management tools, paving the way toward Autonomic Computing. A first step toward Autonomic Grids is presented in this paper; the interactions between the grid middleware and the stream of computational queries are modeled using statistical learning. The approach is implemented and validated in the context of the EGEE grid. The GStrAP system, embedding the StrAP Data Streaming algorithm, provides manageable and understandable views of the computational workload based on gLite reporting services. An online monitoring module shows the instant distribution of the jobs in real-time and its dynamics, enabling anomaly detection. An offline monitoring module provides the administratorwith a consolidated view of the workload, enabling the visual inspection of its long-term trends.","PeriodicalId":118263,"journal":{"name":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 9th IEEE/ACM International Symposium on Cluster Computing and the Grid","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2009.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The ever increasing scale and complexity of large computational systems ask for sophisticated management tools, paving the way toward Autonomic Computing. A first step toward Autonomic Grids is presented in this paper; the interactions between the grid middleware and the stream of computational queries are modeled using statistical learning. The approach is implemented and validated in the context of the EGEE grid. The GStrAP system, embedding the StrAP Data Streaming algorithm, provides manageable and understandable views of the computational workload based on gLite reporting services. An online monitoring module shows the instant distribution of the jobs in real-time and its dynamics, enabling anomaly detection. An offline monitoring module provides the administratorwith a consolidated view of the workload, enabling the visual inspection of its long-term trends.
基于作业流挖掘的多尺度实时网格监控
不断增长的规模和复杂性的大型计算系统需要复杂的管理工具,铺平道路走向自主计算。本文提出了迈向自主网格的第一步;网格中间件和计算查询流之间的交互使用统计学习建模。该方法在EGEE网格环境中得到了实现和验证。GStrAP系统嵌入了StrAP数据流算法,提供了基于gLite报告服务的可管理和可理解的计算工作量视图。在线监控模块实时显示作业的即时分布及其动态,从而实现异常检测。离线监控模块为管理员提供了工作负载的统一视图,从而可以直观地查看其长期趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信