{"title":"Detection and localization of targeted attacks on fully distributed power system state estimation","authors":"O. Vukovic, G. Dán","doi":"10.1109/SmartGridComm.2013.6687989","DOIUrl":null,"url":null,"abstract":"Distributed state estimation will play a central role in the efficient and reliable operation of interconnected power systems. Therefore, its security is of major concern. In this work we show that an attacker that compromises a single control center in an interconnected system could launch a denial of service attack against state-of-the-art distributed state estimation by injecting false data, and consequently, it could blind the entire system. We propose a fully distributed attack detection scheme based on local measurements to detect such a denial of service attack. We then propose a fully distributed attack localization scheme that relies on the regions' beliefs about the attack location, and performs inference on the power system topology to identify the most likely attack location. We validate both algorithms on the IEEE 118 bus power system.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6687989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Distributed state estimation will play a central role in the efficient and reliable operation of interconnected power systems. Therefore, its security is of major concern. In this work we show that an attacker that compromises a single control center in an interconnected system could launch a denial of service attack against state-of-the-art distributed state estimation by injecting false data, and consequently, it could blind the entire system. We propose a fully distributed attack detection scheme based on local measurements to detect such a denial of service attack. We then propose a fully distributed attack localization scheme that relies on the regions' beliefs about the attack location, and performs inference on the power system topology to identify the most likely attack location. We validate both algorithms on the IEEE 118 bus power system.