An Effective Low-Dimensional Software Code Representation using BERT and ELMo

Srijoni Majumdar, Ashutosh Varshney, Partha Pratim Das, Paul D. Clough, S. Chattopadhyay
{"title":"An Effective Low-Dimensional Software Code Representation using BERT and ELMo","authors":"Srijoni Majumdar, Ashutosh Varshney, Partha Pratim Das, Paul D. Clough, S. Chattopadhyay","doi":"10.1109/QRS57517.2022.00082","DOIUrl":null,"url":null,"abstract":"Contextualised word representations (e.g., ELMo and BERT) have been shown to outperform static representations (e.g., Word2vec, Fasttext, and GloVe) for many NLP tasks. In this paper, we investigate the use of contextualised embeddings for code search and classification, an area receiving less attention. We construct CodeELMo by training ELMo from scratch and fine tuning CodeBERT embeddings using masked language modeling based on natural language (NL) texts related to software development concepts and programming language (PL) texts consisting of method comment pairs from open source code bases. The dimensionality of the Finetuned Code BERT embeddings is reduced using linear transformations and augmented with a CodeELMo representation to develop CodeELBE – a lowdimensional contextualised software code representation. Results for binary classification and retrieval tasks show that CodeELBE1 considerably improves retrieval performance on standard deep code search datasets compared to CodeBERT and baseline BERT models.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Contextualised word representations (e.g., ELMo and BERT) have been shown to outperform static representations (e.g., Word2vec, Fasttext, and GloVe) for many NLP tasks. In this paper, we investigate the use of contextualised embeddings for code search and classification, an area receiving less attention. We construct CodeELMo by training ELMo from scratch and fine tuning CodeBERT embeddings using masked language modeling based on natural language (NL) texts related to software development concepts and programming language (PL) texts consisting of method comment pairs from open source code bases. The dimensionality of the Finetuned Code BERT embeddings is reduced using linear transformations and augmented with a CodeELMo representation to develop CodeELBE – a lowdimensional contextualised software code representation. Results for binary classification and retrieval tasks show that CodeELBE1 considerably improves retrieval performance on standard deep code search datasets compared to CodeBERT and baseline BERT models.
基于BERT和ELMo的有效的低维软件代码表示
在许多NLP任务中,情境化的单词表示(例如ELMo和BERT)已经被证明优于静态表示(例如Word2vec, Fasttext和GloVe)。在本文中,我们研究了上下文化嵌入在代码搜索和分类中的使用,这是一个很少受到关注的领域。我们通过从头开始训练ELMo来构建CodeELMo,并使用基于与软件开发概念相关的自然语言(NL)文本和由来自开源代码库的方法注释对组成的编程语言(PL)文本的掩码语言建模来微调CodeBERT嵌入。精调代码BERT嵌入的维数使用线性变换来降低,并使用CodeELMo表示来增强,从而开发出CodeELBE——一种低维的上下文化软件代码表示。二进制分类和检索任务的结果表明,与CodeBERT和基线BERT模型相比,CodeELBE1显著提高了标准深度代码搜索数据集的检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信