Multi-temporal SAR classification according to change detection operators

S. Hachicha, C. Deledalle, F. Chaabane, F. Tupin
{"title":"Multi-temporal SAR classification according to change detection operators","authors":"S. Hachicha, C. Deledalle, F. Chaabane, F. Tupin","doi":"10.1109/MULTI-TEMP.2011.6005066","DOIUrl":null,"url":null,"abstract":"Multitemporal SAR images are a very useful source of information for geophysicists, especially for change monitoring. In this paper, a new SAR change detection and monitoring approach is proposed through the analysis of a time series of SAR images covering the same region. The first contribution of this work is the SAR filtering preprocessing step using an extension of the spatial NL-means filter to the temporal domain. Then, the Rayleigh Kullback Leibler measure is used to detect the changes between a reference image and each SAR image. This leads to the second contribution which consists on a temporal classification based on changes images and describing the temporal behaviour of the changing regions.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Multitemporal SAR images are a very useful source of information for geophysicists, especially for change monitoring. In this paper, a new SAR change detection and monitoring approach is proposed through the analysis of a time series of SAR images covering the same region. The first contribution of this work is the SAR filtering preprocessing step using an extension of the spatial NL-means filter to the temporal domain. Then, the Rayleigh Kullback Leibler measure is used to detect the changes between a reference image and each SAR image. This leads to the second contribution which consists on a temporal classification based on changes images and describing the temporal behaviour of the changing regions.
基于变化检测算子的多时相SAR分类
对于地球物理学家来说,多时相SAR图像是非常有用的信息来源,特别是用于变化监测。本文通过对覆盖同一区域的时间序列SAR图像进行分析,提出了一种新的SAR变化检测与监测方法。这项工作的第一个贡献是SAR滤波预处理步骤,使用空间nl -均值滤波器扩展到时域。然后,使用瑞利-库拉贝克-莱伯勒测度来检测参考图像与各SAR图像之间的变化。这导致了第二个贡献,即基于变化图像的时间分类和描述变化区域的时间行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信