Non-parallel Voice Conversion based on Hierarchical Latent Embedding Vector Quantized Variational Autoencoder

Tuan Vu Ho, M. Akagi
{"title":"Non-parallel Voice Conversion based on Hierarchical Latent Embedding Vector Quantized Variational Autoencoder","authors":"Tuan Vu Ho, M. Akagi","doi":"10.21437/vcc_bc.2020-20","DOIUrl":null,"url":null,"abstract":"This paper proposes a hierarchical latent embedding structure for Vector Quantized Variational Autoencoder (VQVAE) to improve the performance of the non-parallel voice conversion (NPVC) model. Previous studies on NPVC based on vanilla VQVAE use a single codebook to encode the linguistic information at a fixed temporal scale. However, the linguistic structure contains different semantic levels (e.g., phoneme, sylla-ble, word) that span at various temporal scales. Therefore, the converted speech may contain unnatural pronunciations which can degrade the naturalness of speech. To tackle this problem, we propose to use the hierarchical latent embedding structure which comprises several vector quantization blocks operating at different temporal scales. When trained with a multi-speaker database, our proposed model can encode the voice characteristics into the speaker embedding vector, which can be used in one-shot learning settings. Results from objective and subjective tests indicate that our proposed model outperforms the conventional VQVAE based model in both intra-lingual and cross-lingual conversion tasks. The official results from Voice Conversion Challenge 2020 reveal that our proposed model achieved the highest naturalness performance among autoencoder based models in both tasks. Our implementation is being made available at 1 .","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper proposes a hierarchical latent embedding structure for Vector Quantized Variational Autoencoder (VQVAE) to improve the performance of the non-parallel voice conversion (NPVC) model. Previous studies on NPVC based on vanilla VQVAE use a single codebook to encode the linguistic information at a fixed temporal scale. However, the linguistic structure contains different semantic levels (e.g., phoneme, sylla-ble, word) that span at various temporal scales. Therefore, the converted speech may contain unnatural pronunciations which can degrade the naturalness of speech. To tackle this problem, we propose to use the hierarchical latent embedding structure which comprises several vector quantization blocks operating at different temporal scales. When trained with a multi-speaker database, our proposed model can encode the voice characteristics into the speaker embedding vector, which can be used in one-shot learning settings. Results from objective and subjective tests indicate that our proposed model outperforms the conventional VQVAE based model in both intra-lingual and cross-lingual conversion tasks. The official results from Voice Conversion Challenge 2020 reveal that our proposed model achieved the highest naturalness performance among autoencoder based models in both tasks. Our implementation is being made available at 1 .
基于层次隐嵌入矢量量化变分自编码器的非并行语音转换
为了提高非并行语音转换(NPVC)模型的性能,提出了一种面向矢量量化变分自编码器(VQVAE)的分层潜嵌入结构。以往基于vanilla VQVAE的NPVC研究使用单一码本在固定时间尺度上对语言信息进行编码。然而,语言结构包含不同的语义层次(如音素、音节、词),这些层次在不同的时间尺度上跨越。因此,转换后的语音可能包含不自然的发音,从而降低语音的自然度。为了解决这个问题,我们提出使用分层潜嵌入结构,该结构由多个在不同时间尺度上操作的矢量量化块组成。当使用多说话人数据库进行训练时,我们提出的模型可以将语音特征编码为说话人嵌入向量,可以用于一次性学习设置。客观和主观测试的结果表明,我们提出的模型在语内和跨语转换任务中都优于传统的基于VQVAE的模型。2020年语音转换挑战的官方结果显示,我们提出的模型在这两个任务中都实现了基于自编码器的模型中最高的自然度性能。我们的实现将在1点可用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信