{"title":"Spatio-temporal environmental monitoring for smart buildings","authors":"Linh V. Nguyen, G. Hu, C. Spanos","doi":"10.1109/ICCA.2017.8003073","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of efficiently monitoring environmental fields in a smart building by the use of a network of wireless noisy sensors that take discretely-predefined measurements at their locations through time. It is proposed that the indoor environmental fields are statistically modeled by spatio-temporal non-parametric Gaussian processes. The proposed models are able to effectively predict and estimate the indoor climate parameters at any time and at any locations of interest, which can be utilized to create timely maps of indoor environments. More importantly, the monitoring results are practically crucial for building management systems to efficiently control energy consumption and maximally improve human comfort in the building. The proposed approach was implemented in a real tested space in a university building, where the obtained results are highly promising.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The paper addresses the problem of efficiently monitoring environmental fields in a smart building by the use of a network of wireless noisy sensors that take discretely-predefined measurements at their locations through time. It is proposed that the indoor environmental fields are statistically modeled by spatio-temporal non-parametric Gaussian processes. The proposed models are able to effectively predict and estimate the indoor climate parameters at any time and at any locations of interest, which can be utilized to create timely maps of indoor environments. More importantly, the monitoring results are practically crucial for building management systems to efficiently control energy consumption and maximally improve human comfort in the building. The proposed approach was implemented in a real tested space in a university building, where the obtained results are highly promising.